Muscle Fibre Regeneration in Human Skeletal Muscle Diseases

  • George Karpati
  • Maria J. Molnar
Part of the Advances in Muscle Research book series (ADMR, volume 3)


Satellite Cell Duchenne Muscular Dystrophy Muscle Regeneration Duchenne Muscular Dystrophy Inclusion Body Myositis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allbrook D (1981) Skeletal muscle regeneration. Muscle Nerve 4:234–245PubMedCrossRefGoogle Scholar
  2. Anderson LVB (2002) Dystrophinopathies. In: Karpati G (ed) Structural and molecular basis of skeletal muscle diseases. International Society of Neuropathology Press, Los Angeles, pp 6–23.Google Scholar
  3. Anderson JE (2006) The satellite cell as a companion in skeletal muscle plasticity: currency, conveyance, clue, connector and colander. J Exp Biol 209:2276–2292PubMedCrossRefGoogle Scholar
  4. Anversa P, Kajstura J, Leri A (2004) Circulating progenitor cells: search for an identity. Circulation 110:3158–3160PubMedCrossRefGoogle Scholar
  5. Bernasconi P, Torchiana E, Confalonieri P, Brugnoni R, Barresi R, Mora M, Cornelio F., Morandi L, Mantegazza R (1995) Expression of transforming growth factor-beta 1 in dystrophic patient muscles correlates with fibrosis. Pathogenetic role of a fibrogenic cytokine. J Clin Invest 96:1137–1144PubMedGoogle Scholar
  6. Bischoff R (1994) The satellite cell and muscle regeneration. In: Engel AG, Frazini-Armstrong C (eds) MyologyMcGraw-Hill, New York, pp 97–118.Google Scholar
  7. Carpenter S, Karpati G (2001) Skeletal Muscle Pathology. New York: Oxford University PressGoogle Scholar
  8. Chen JC, Goldhamer DJ (2003) Skeletal muscle stem cells. Reprod Biol Endocrinol 1:101PubMedCrossRefGoogle Scholar
  9. Chou SM, Nonaka I (1977) Satellite cells and muscle regeneration in diseased human skeletal muscles. J Neurol Sci 34:131–145PubMedCrossRefGoogle Scholar
  10. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301PubMedCrossRefGoogle Scholar
  11. Collins CA, Zammit PS, Ruiz AP, Morgan JE, Partridge TA (2007) A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 25:885–894PubMedCrossRefGoogle Scholar
  12. Cossu G, Biressi S (2005) Satellite cells, myoblasts and other occasional myogenic progenitors: possible origin, phenotypic features and role in muscle regeneration. Semin Cell Dev Biol 16:623–631PubMedCrossRefGoogle Scholar
  13. Deasy BM, Gharaibeh BM, Pollett JB, Jones MM, Lucas MA, Kanda Y, Huard J (2005) Long-term self-renewal of postnatal muscle-derived stem cells. Mol Biol Cell 16:3323–3333PubMedCrossRefGoogle Scholar
  14. Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15:666–673PubMedCrossRefGoogle Scholar
  15. Figarella-Branger D, Pellissier JF, Bianco N, Karpati G (1999) Sequence of expression of MyoD1 and various cell surface and cytoskeletal proteins in regenerating mouse muscle fibers following treatment with sodium dihydrogen phosphate. J Neurol Sci 170:151–160PubMedCrossRefGoogle Scholar
  16. Grobler LA, Collins M, Lambert MI, Sinclair-Smith C, Derman W, St Clair GA, Noakes TD (2004) Skeletal muscle pathology in endurance athletes with acquired training intolerance. Br J Sports Med 38:697–703PubMedCrossRefGoogle Scholar
  17. Grounds MD (1991) Towards understanding skeletal muscle regeneration. Pathol Res Pract 187:1–22PubMedGoogle Scholar
  18. Hohlfeld R (2002) Polymyositis and Dermatomyositis. In: Karpati G (ed) Structural and molecular basis of skeletal muscle diseases. ISN Neuropath Press, Basel, pp 221–227Google Scholar
  19. Karpati G (2002) General Pathological, Immunopathological, and Genetic Background of Skeletal Muscle Disorders. In: Karpati G (ed) Structural and molecular basis of skeletal muscle diseases. ISN Neuropath Press, Basel, pp 1–3Google Scholar
  20. Karpati G (1997) Utrophin muscles in on the action. Nat Med 3:22–23PubMedCrossRefGoogle Scholar
  21. Karpati G, Carpenter S (1993) Pathology of the inflammatory myopathies. Baillieres Clin Neurol 2:527–556Google Scholar
  22. Karpati G, Carpenter S, Prescott S (1988) Small-caliber skeletal muscle fibers do not suffer necrosis in mdx mouse dystrophy. Muscle Nerve 11:795–803PubMedCrossRefGoogle Scholar
  23. Lefaucheur JP, Sebille A (1995) Muscle regeneration following injury can be modified in vivo by immune neutralization of basic fibroblast growth factor, transforming growth factor beta 1 or insulin-like growth factor I. J Neuroimmunol 57:85–91PubMedCrossRefGoogle Scholar
  24. McCroskery S, Thomas M, Platt L, Hennebry A, Nishimura T, McLeay L, Sharma M, Kambadur R (2005) Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice. J Cell Sci 118:3531–3541PubMedCrossRefGoogle Scholar
  25. Mouly V, Aamiri A, Bigot A, Cooper RN, Di Donna S, Furling D, Gidaro T, Jacquemin V, Mamchaoui K, Negroni E, Perie S, Renault V, Silva-Barbosa SD, Butler-Browne GS (2005) The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy. Acta Physiol Scand 184:3–15PubMedCrossRefGoogle Scholar
  26. Nowak KJ, Davies KE (2004) Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 5:872–876PubMedCrossRefGoogle Scholar
  27. Partridge T (2000) The current status of myoblast transfer. Neurol Sci 21:S939–S942PubMedCrossRefGoogle Scholar
  28. Qu Z, Balkir L, van Deutekom JC, Robbins PD, Pruchnic R, Huard J (1998) Development of approaches to improve cell survival in myoblast transfer therapy. J Cell Biol 142:1257–1267PubMedCrossRefGoogle Scholar
  29. Qu-Petersen Z, Deasy B, Jankowski R, Ikezawa M, Cummins J, Pruchnic R, Mytinger J, Cao B, Gates C, Wernig A, Huard J (2002) Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol 157:851–864PubMedCrossRefGoogle Scholar
  30. Renault V, Piron-Hamelin G, Forestier C, DiDonna S, Decary S, Hentati F, Saillant G, Butler-Browne GS, Mouly V (2000) Skeletal muscle regeneration and the mitotic clock. Exp Gerontol 35:711–719PubMedCrossRefGoogle Scholar
  31. Schultz E, McCormick KM (1994) Skeletal muscle satellite cells. Rev Physiol Biochem Pharmacol 123:213–257PubMedCrossRefGoogle Scholar
  32. Seale P, Rudnicki MA (2000) A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Dev Biol 218:115–124PubMedCrossRefGoogle Scholar
  33. Sherwood RI, Wagers AJ (2006) Harnessing the potential of myogenic satellite cells. Trends Mol Med 12:189–192PubMedCrossRefGoogle Scholar
  34. Snow MH (1977) The effects of aging on satellite cells in skeletal muscles of mice and rats. Cell Tissue Res 185:399–408PubMedCrossRefGoogle Scholar
  35. Tavian M, Zheng B, Oberlin E, Crisan M, Sun B, Huard J, Peault B (2005) The vascular wall as a source of stem cells. Ann N Y Acad Sci 1044:41–50PubMedCrossRefGoogle Scholar
  36. Turk R, Sterrenburg E, de Meijer E, van Ommen G, den Dunnen J, ’t Hoen P (2005) Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling. BMC Genomics 13:98CrossRefGoogle Scholar
  37. Wagner KR, Liu X, Chang X, Allen RE (2005) Muscle regeneration in the prolonged absence of myostatin. Proc Natl Acad Sci U S A 102:2519–2524PubMedCrossRefGoogle Scholar
  38. Webster C, Blau HM (1990) Accelerated age-related decline in replicative life-span of Duchenne muscular dystrophy myoblasts: implications for cell and gene therapy. Somat Cell Mol Genet 16:557–565PubMedCrossRefGoogle Scholar
  39. Zammit PS, Beauchamp JR (2001) The skeletal muscle satellite cell: stem cell or son of stem cell? Differentiation 193–204Google Scholar
  40. Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166:347–357Google Scholar
  41. Zhao P, Hoffman EP (2004) Embryonic myogenesis pathways in muscle regeneration. Dev Dyn 229:380–392PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • George Karpati
    • 1
  • Maria J. Molnar
    • 1
    • 2
  1. 1.Neuromuscular Research Group Montreal Neurological InstituteMcGill UniversityMontrealCanada
  2. 2.Molecular Medicine DivisionNational Institute of Psychiatry and NeurologyBudapest

Personalised recommendations