Skeletal Muscle Repair After Exercise-Induced Injury

  • Tero A.H. Järvinen
  • Minna Kääriäinen
  • Ville Äärimaa
  • Markku Järvinen
  • Hannu Kalimo
Part of the Advances in Muscle Research book series (ADMR, volume 3)


Muscular Dystrophy Satellite Cell Muscle Injury Inclusion Body Myositis Delay Onset Muscle Soreness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexanderson H & Lundberg IE. (2005) The role of exercise in the rehabilitation of idiopathic inflammatory myopathies. Curr Opin Rheumatol 17:164–167.PubMedCrossRefGoogle Scholar
  2. Alexanderson H, Dastmalchi M, Esbjornsson-Liljedahl M, Opava CH, Lundberg IE. (2007) Benefits of intensive resistance training in patients with chronic polymyositis or dermatomyositis. Arthritis Rheum 57:768–777.PubMedCrossRefGoogle Scholar
  3. Almekinders LC. (1991) Results of surgical repair versus splinting of experimentally transected muscle. J Orthop Trauma 5:173–176.PubMedCrossRefGoogle Scholar
  4. Ansved T. (2003) Muscular dystrophies: influence of physical conditioning on the disease evolution. Curr Opin Clin Nutr Metab Care 6:435–439.PubMedCrossRefGoogle Scholar
  5. Arnardottir S, Alexanderson H, Lundberg IE & Borg K. (2003) Sporadic inclusion body myositis: pilot study on the effects of a home exercise program on muscle function, histopathology and inflammatory reaction. J Rehabil Med 35:31–35.PubMedCrossRefGoogle Scholar
  6. Beiner JM & Jokl P. (2001) Muscle contusion injuries: current treatment options. J Am Acad Orthop Surg 9:227–237.PubMedGoogle Scholar
  7. Belkin, AM. et al. (1997) Muscle beta1D integrin reinforces the cytoskeleton-matrix link: modulation of integrin adhesive function by alternative splicing. J Cell Biol 139:1583–1595.PubMedCrossRefGoogle Scholar
  8. Best TM & Hunter KD. (2000) Muscle injury and repair. Physical Medical Rehabilitation Clinics in North America 11:251–266.Google Scholar
  9. Bouchentouf M, Benabdallah BF, Mills P & Tremblay JP (2006) Exercise improves the success of myoblast transplantation in mdx mice. Neuromusc Disord 16:518–529.PubMedCrossRefGoogle Scholar
  10. Briani C, Doria A, Sarzi-Puttini P & Dalakas MC. (2006) Update on idiopathic inflammatory myopathies. Autoimmunity 39:161–170.PubMedCrossRefGoogle Scholar
  11. Brooks JHM, Fuller CW, Kemp SPT & Reddin DB. (2006) Incidence, risk and prevention of hamstring muscle injuries in professional rugby union. Am J Sports Med 34:1297–1306.PubMedCrossRefGoogle Scholar
  12. Buckwalter JA. (1995) Should bone, soft tissue, and joint injuries be treated with rest or activity? J Orthop Res 13:155–156.PubMedCrossRefGoogle Scholar
  13. Burkin DJ & Kaufman SJ. (1999) The α7β1 integrin in muscle development and disease. Cell Tissue Res. 296:183–190PubMedCrossRefGoogle Scholar
  14. Carter GT, Abresch RT & Fowler WM Jr. (2002) Adaptations to exercise training and contraction-induced muscle injury in animal models of muscular dystrophy. Am J Phys Med Rehabil 81(11 Suppl):S151–S161.PubMedCrossRefGoogle Scholar
  15. Chargé SBP & Rudnicki MA. (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev. 84:209–238.PubMedCrossRefGoogle Scholar
  16. Childers MK, Okamura CS, Bogan DJ, Bogan JR, Petroski GF, McDonald K & Kornegay JN (2002) Eccentric contraction injury in dystrophic canine muscle. Arch Phys Med Rehabil 83:1572–1578.PubMedCrossRefGoogle Scholar
  17. Crisco JJ, Jokl P, Heinen GT, et al. (1994) A muscle contusion injury model. Biomechanics, physiology, and histology. Am J Sports Med 22:702–710.PubMedCrossRefGoogle Scholar
  18. Davies KE & Nowak KJ. (2006) Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol. 7:762–773.PubMedCrossRefGoogle Scholar
  19. Ekstrand J & Gillquist J. (1983) Soccer injuries and their mechanism: a prospective study. Med and Sci Sports & Exerc 15:267–270.CrossRefGoogle Scholar
  20. Erickson HP. (2002) Stretching fibronectin. J Muscle Res Cell Motil 23:575–580.PubMedCrossRefGoogle Scholar
  21. Ervasti JM. (2007) Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. Biochim Biophys Acta 1772:108–117.PubMedGoogle Scholar
  22. Felsenfeld DP, Choquet, D & Sheetz, MP. (1996) Ligand binding regulates the directed movement of beta1 integrins on fibroblasts. Nature 383:438–440.PubMedCrossRefGoogle Scholar
  23. Friden J & Lieber RL. (2002) Tendon transfer surgery: clinical implications of experimental studies. Clinical Orthop Relat Res S163–S170Google Scholar
  24. Garrett WE. (1996) Muscle strain injuries. Am J Sports Med 24: S2–S8.PubMedCrossRefGoogle Scholar
  25. Goetsch SC, Hawke TJ, Gallardo TD et al. (2003) Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiol. Genomics 14:261–271.Google Scholar
  26. Grange RW & Call JA. (2007) Recommendations to define exercise prescription for Duchenne muscular dystrophy. Exerc Sport Sci Rev 35:12–17.PubMedCrossRefGoogle Scholar
  27. Grounds MD, Sorokin L & White J. (2005) Strength at the extracellular matrix-muscle interface. Scand J Med Sci Sports 15:381–391.PubMedCrossRefGoogle Scholar
  28. Huard J, Li Y & Fu FH. (2002) Muscle injuries and repair: current trends in research. Journal of Bone & Joint Surgery 84-A:822–832.Google Scholar
  29. Hurme T, Kalimo H, Lehto M & Järvinen M. (1991a) Healing of skeletal muscle injury. An ultrastructural and immunohistochemical study. Med Sci Sports Exerc 23:801–810.Google Scholar
  30. Hurme T, Kalimo H, Sandberg M, et al. (1991b) Localization of type I and III collagen and fibronectin production in injured gastrocnemius muscle. Lab Invest 64:76–84.Google Scholar
  31. Hurme T & Kalimo H. (1992a) Activation of myogenic precursor cells after muscle injury. Med Sci Sports Exerc 24:197–205.Google Scholar
  32. Hurme T & Kalimo H. (1992b) Adhesion in skeletal muscle regeneration. Muscle Nerve 15:482–489.CrossRefGoogle Scholar
  33. Jackson DW & Feagin JA. (1973) Quadriceps contusions in young athletes: relation of severity of injury to treatment and prognosis. J Bone & Joint Surg 55-A:95–105.Google Scholar
  34. Järvinen M. (1975) Healing of a crush injury in rat striated muscle. 2. A histological study of the effect of early mobilization and immobilization on the repair processes. Acta Pathol Microbiol Scand 83A:269–282.Google Scholar
  35. Järvinen M. (1976a) Healing of a crush injury in rat striated muscle. 4. Effect of early mobilization and immobilization on the tensile properties of gastrocnemius muscle. Acta Chir Scand 142:47–56.Google Scholar
  36. Järvinen M. (1976b) Healing of a crush injury in rat striated muscle. 3. A microangiographical study of the effect of early mobilization and immobilization on capillary ingrowth. Acta Pathol Microbiol Scand 84A:85–94.Google Scholar
  37. Järvinen TA, Kannus P, Jarvinen TL, Jozsa L, Kalimo H, Jarvinen M (2002) Tenascin-C in the pathobiology and healing Process of musculoskeletal tissue injury. Scand J Med Sci Sports 10:376–382.CrossRefGoogle Scholar
  38. Järvinen M & Lehto MUK. (1993) The effect of early mobilization and immobilization on the healing process following muscle injuries. Sports Med 15:78–89.PubMedGoogle Scholar
  39. Järvinen TAH, Józsa L, Kannus P, Järvinen TLN, Hurme T, Kvist M, Pelto-Huikko M, Kalimo H & Järvinen M. (2003a) Mechanical loading regulates the expression of tenascin-C in the myotendinous junction and tendon but does not induce de novo-synthesis in the skeletal muscle. J Cell Sci 116:857–866.CrossRefGoogle Scholar
  40. Järvinen TAH, Järvinen TLN, Kannus P & Kalimo H. (2003b) Ectopic expression of tenascin-C. J Cell Sci 116:3851–3853CrossRefGoogle Scholar
  41. Järvinen TAH, Järvinen TLN, Kääriäinen M, Kalimo H & Järvinen M. (2005) Biology of muscle trauma. Am J Sports Med 33:745–766.PubMedCrossRefGoogle Scholar
  42. Kalimo H, Rantanen J & Järvinen M. (1997) Muscle injuries in sports. Baillière’s Clinical Orthop 2:1–24.Google Scholar
  43. Kannus P, Parkkari J, Järvinen TLN, Järvinen TAH & Järvinen M. (2003) Basic science and clinical studies coincide: active approach is needed in the treatment of sports injuries. Scand J Med Sci Sports 13:150–154.PubMedCrossRefGoogle Scholar
  44. Kimura S, Ikezawa M, Nomura K, Ito K, Ozasa S, Ueno H, Yoshioka K, Yano S, Yamashita T, Matuskura M, Miike T (2006) Immobility reduces muscle fiber necrosis in dystrophin deficient muscular dystrophy. Brain Dev 28:473–476.PubMedCrossRefGoogle Scholar
  45. Kuang S, Kuroda K, Le Grand F & Rudnicki MA. (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:999–1010.Google Scholar
  46. Kääriäinen M, Kääriäinen J, Järvinen TLN, et al. (1998) Correlation between biomechanical and structural changes during the regeneration of skeletal muscle after laceration injury. J Orthop Res 16:197–206.PubMedCrossRefGoogle Scholar
  47. Kääriäinen M, Kääriäinen J, Järvinen TLN, et al. (2000) Integrin and dystrophin associated adhesion protein complexes during regeneration of shearing-type muscle injury. Neuromusc Disord 10:121–134.PubMedCrossRefGoogle Scholar
  48. Kääriäinen M, Liljamo T, Pelto-Huikko M, et al. (2001) Regulation of α7 integrin and merosin by mechanical stress during skeletal muscle regeneration. Neuromusc Disord 11:360–369.PubMedCrossRefGoogle Scholar
  49. Kääriäinen M, Nissinen L, Järvinen M, et al. (2002) Expression of α7β1 integrin splicing variants during skeletal muscle regeneration. Am J Pathol 161:1023–1031.PubMedGoogle Scholar
  50. Lehto M, Järvinen M & Nelimarkka O. (1986) Scar formation after skeletal muscle injury. A histological and autoradiographical study in rats. Arch Orthop Trauma Surg 104:366–370.PubMedCrossRefGoogle Scholar
  51. Lehto M, Duance VC & Restall D. (1985a) Collagen and fibronectin in a healing skeletal muscle injury. An immunohistochemical study of the effects of physical activity on the repair of injured gastrocnemius muscle in the rat. J Bone Joint Surg 67B:820–828.Google Scholar
  52. Lehto M & Järvinen M. (1985b) Collagen and glycosaminoglycan synthesis of injured gastrocnemius muscle in rat. Eur Surg Res 17:179–185.Google Scholar
  53. Lehto M, Sims TJ & Bailey AJ. (1985c) Skeletal muscle injury – molecular changes in the collagen during healing. Res Exp Med 185:95–106.CrossRefGoogle Scholar
  54. Lieber RL, Schmitz MC, Mishra DK & Friden J. (1994) Contractile and cellular remodeling in rabbit skeletal muscle after cyclic eccentric contractions. J Appl Physiol 77:1926–1934.PubMedGoogle Scholar
  55. MacIntyre NJ, Bhandari M, Blimkie CJ, Adachi JD & Webber CE. (2001) Effect of altered physical loading on bone and muscle in the forearm. Can J physiol pharmacol 79:1015–1022.PubMedCrossRefGoogle Scholar
  56. Menetrey J, Kasemkijwattana C, Fu FH, et al. (1999) Suturing versus immobilization of a muscle laceration. A morphological and functional study in a mouse model. Am J Sports Med 27:222–229.PubMedGoogle Scholar
  57. Mercado ML, et al. (2004) Neurite outgrowth by the alternatively spliced region of human tenascin-C is mediated by neuronal alpha7beta1 integrin. J Neurosci 24:238–247.PubMedCrossRefGoogle Scholar
  58. Milner DJ & Kaufman SJ. (2007) Alpha7beta1 integrin does not alleviate disease in a mouse model of limb girdle muscular dystrophy type 2F. Am J Pathol 170:609–619.PubMedCrossRefGoogle Scholar
  59. Morla A, Zhang Z & Ruoslahti E. (1994) Superfibronectin is a functionally distinct form of fibronectin. Nature 367:193–196.PubMedCrossRefGoogle Scholar
  60. Noonan TJ, Best TM, Seaber AV & Garrett WE Jr. (1993) Thermal effects on skeletal muscle behavior. Am J Sports Med 21:517–522.PubMedCrossRefGoogle Scholar
  61. Oberhauser AF, Marszalek PE, Erickson HP, Fernandez JM (1998) The molecular elasticity of the extracellular matrix Protien tenascin. Nature 393:181–185.PubMedCrossRefGoogle Scholar
  62. Olsen DB, Orngreen MC & Vissing J. (2005) Aerobic training improves exercise performance in facioscapulohumeral muscular dystrophy. Neurology 64:1064–1066.PubMedGoogle Scholar
  63. Pate RR, Pratt M, Blair SN, Haskell WL, Macera CA, Bouchard C, Buchner D, Ettinger W, Heath GW, King AC, et al. (1995) Physical activity and public health. A recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA 273:402–407.PubMedCrossRefGoogle Scholar
  64. Petersen J & Hölmich P. (2005) Evidence based prevention of hamstring injuries in sports. Br J Sports Med 39:319–323.PubMedCrossRefGoogle Scholar
  65. Rantanen J, Ranne J, Hurme T, et al. (1995a) Satellite cell proliferation and expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different populations of satellite cells. Lab Invest 72:341–347.Google Scholar
  66. Rantanen J, Ranne J, Hurme T, et al. (1995b) Denervated segments of injured skeletal muscle fibres are reinnervated by newly formed neuromuscular junctions. J Neuropath Exp Neurol 54:188–191.Google Scholar
  67. Safran MR, Garrett WE Jr, Seaber AV, Glisson RR & Ribbeck BM. (1988) The role of warm-up in muscular injury prevention. Am J Sports Med 16:123–129.Google Scholar
  68. Safran MR, Seaber AV & Garrett WE Jr. (1989) Warm-up and muscular injury prevention. Sports 8:239–249.CrossRefGoogle Scholar
  69. Sherry MA & Best TM. (2004) A comparison of 2 rehabilitation programs in the treatment of acute hamstring strains. J Orthop Sports Phys Therapy 34:116–125.Google Scholar
  70. Song WK, Wang W, Foster RF, et al. (1993) β36-α7 is a novel integrin alpha chain that is developmentally regulated during skeletal myogenesis. J Cell Biol 117:643–657.CrossRefGoogle Scholar
  71. Sveen ML, Jeppesen TD, Hauerslev S, Krag TO & Vissing J. (2007) Endurance training: an effective and safe treatment for patients with LGMD2I. Neurology 68:59–61.PubMedCrossRefGoogle Scholar
  72. Vachon PH, Xu H, Liu L, Loechel F, Hayashi Y, Arahata K, Reed JC, Wewer UM & Engvall E. (1997) Integrins (α7β1) in muscle function and survival. Disrupted expression in merosin-deficient congenital muscular dystrophy. J Clin Invest 100:1870–1881.PubMedGoogle Scholar
  73. Vaittinen S, Lukka R, Sahlgren C, et al. (2001) The expression of intermediate filament protein nestin as related to vimentin and desmin in regenerating skeletal muscle. J Neuropathol Exp Neurol 60:588–59.PubMedGoogle Scholar
  74. Vaittinen S, Hurme T, Rantanen J, et al. (2002) Transected myofibres may remain permanently divided in two parts. Neuromuscul Disord 12:584–587.PubMedCrossRefGoogle Scholar
  75. van der Kooi EL, Vogels OJ, van Asseldonk RJ, Lindeman E, Hendriks JC, Wohlgemuth M, van der Maarel SM & Padberg GW. (2004) Strength training and albuterol in facioscapulohumeral muscular dystrophy. Neurology 63:702–708.PubMedGoogle Scholar
  76. van der Kooi EL, Lindeman E & Riphagen I. (2005) Strength training and aerobic exercise training for muscle disease. Cochrane Database Syst Rev (1):CD003907Google Scholar
  77. von der Mark H, Williams I, Wendler O, Sorokin L, von der Mark K. & Poschl E. (2002) Alternative splice variants of α7 β1 integrin selectively recognize different laminin isoforms. J Biol Chem 277:6012–6016Google Scholar
  78. Wierzbicka-Patynowski I, Schwarzbauer JE (2003) The ins and outs of fibronectin matrix assembly. J cell Sci 116:3269–3276.PubMedCrossRefGoogle Scholar
  79. Woodard C. (1954) What is active treatment? In Woodard C (eds) Sports Medicine. London: Max Parrish & Co, pp 1–14.Google Scholar
  80. Yan Z, Choi S, Liu X, Zhang M, Schageman JJ, Lee SY, Hart R, Lin L, Thurmond FA & Williams RS. (2003) Highly coordinated gene regulation in mouse skeletal muscle regeneration. J Biol Chem 278:8826–8836.PubMedCrossRefGoogle Scholar
  81. Yu JG & Thornell LE. (2002) Desmin and actin alterations in human muscles affected by delayed onset muscle soreness: a high resolution immunocytochemical study. Histochem Cell Biol 118:171–9.PubMedGoogle Scholar
  82. Yu JG, Malm C & Thornell LE. (2002) Eccentric contractions leading to DOMS do not cause loss of desmin nor fibre necrosis in human muscle. Histochem Cell Biol 118:29–34.PubMedGoogle Scholar
  83. Yu JG, Carlsson L & Thornell LE. (2004) Evidence for myofibril remodeling as opposed to myofibril damage in human muscles with DOMS: an ultrastructural and immunoelectron microscopic study. Histochemistry and Cell Biology 121:219–227.PubMedCrossRefGoogle Scholar
  84. Yu JG, Furst DO & Thornell LE. (2003) The mode of myofibril remodelling in human skeletal muscle affected by DOMS induced by eccentric contractions. Histochemistry and Cell Biology 119:383–393.PubMedGoogle Scholar
  85. Zinna EM & Yarasheski KE. (2003) Exercise treatment to counteract protein wasting of chronic diseases. Curr Opin Clin Nutr Metab Care 6:87–93.PubMedCrossRefGoogle Scholar
  86. Zupan A, Gregoric M, Valencic V & Vandot S. (1993) Effects of electrical stimulation on muscles of children with Duchenne and Becker muscular dystrophy. Neuropediatrics 24:189–192.PubMedGoogle Scholar
  87. äärimaa V, Rantanen J, Best T, Schultz E, et al. (2004a) Mild eccentric stretch injury in skeletal muscle causes transient effects on tensile load and cell proliferation. Scand. J Med Sci Sports 14:367–372.CrossRefGoogle Scholar
  88. äärimaa V, Kääriäinen M, Vaittinen S, et al. (2004b) Restoration of myofiber continuity after transection injury by surgical suturing. Neuromuscul Disord 3:421–428.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Tero A.H. Järvinen
    • 1
    • 2
  • Minna Kääriäinen
    • 1
    • 2
  • Ville Äärimaa
    • 3
  • Markku Järvinen
    • 1
    • 2
  • Hannu Kalimo
    • 4
    • 5
  1. 1.Medical SchoolUniversity of TampereTampereFinland
  2. 2.Departments of Orthopaedic and Plastic SurgeryTampere University HospitalTampereFinland
  3. 3.Department of Orthopedic SurgeryUniversity and University Central Hospital of TurkuTurkuFinland
  4. 4.Department of PathologyUniversity and University Central Hospital of Helsinki and TurkuHelsinki and TurkuFinland
  5. 5.Department of PathologyUniversity and University Hospital of UppsalaUppsalaSweden

Personalised recommendations