Complexity of Extracellular Matrix and Skeletal Muscle Regeneration

  • Miranda D. Grounds
Part of the Advances in Muscle Research book series (ADMR, volume 3)


Skeletal Muscle Satellite Cell Duchenne Muscular Dystrophy Muscle Regeneration Myoblast Fusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ai X, Do AT, Kusche-Gullberg M, Lindahl U, Lu K, Emerson CP, Jr (2006) Substrate specificity and domain functions of extracellular heparan sulfate 6-O-endosulfatases, QSulf1 and QSulf2. J Biol Chem 281:4969–4976PubMedCrossRefGoogle Scholar
  2. Ai X, Do AT, Lozynska O, Kusche-Gullberg M, Lindahl U, Emerson CP, Jr (2003) QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling. J Cell Biol 162:341–351PubMedCrossRefGoogle Scholar
  3. Aumailley M, Bruckner-Tuder man L, Carter WG, Deutzmann R, Edgar D, Ekblom P, Engel J, Engvall E, Hohenester E, Jones JC, Kleinman HK, Marinkovich MP, Martin GR, Mayer U, Meneguzzi G, Miner JH, Miyazaki K, Patarroyo M, Paulsson M, Quaranta V, Sanes JR, Sasaki T, Sekiguchi K, Sorokin LM, Talts JF, Tryggvason K, Uitto J, Virtanen I, von der Mark K, Wewer UM, Yamada Y, Yurchenco PD (2005) A simplified laminin nomenclature. Matrix Biol 24:326–332PubMedCrossRefGoogle Scholar
  4. Avery NC, Bailey AJ (2005) Enzymic and non-enzymic cross-linking mechanisms in relation to turnover of collagen: relevance to aging and exercise. Scand J Med Sci Sports 15:231–240PubMedCrossRefGoogle Scholar
  5. Barbosa I, Morin C, Garcia S, Duchesnay A, Oudghir M, Jenniskens G, Miao HQ, Guimond S, Carpentier G, Cebrian J, Caruelle JP, van Kuppevelt T, Turnbull J, Martelly I, Papy-Garcia D (2005) A synthetic glycosaminoglycan mimetic (RGTA) modifies natural glycosaminoglycan species during myogenesis. J Cell Sci 118:253–264PubMedCrossRefGoogle Scholar
  6. Barresi R, Campbell KP (2006) Dystroglycan: from biosynthesis to pathogenesis of human disease. J Cell Sci 119:199–207PubMedCrossRefGoogle Scholar
  7. Beach RL, Burton WV, Hendricks WJ, Festoff BW (1982) Extracellular matrix synthesis by skeletal muscle in culture. Proteins and effect of enzyme degradation. J Biol Chem 257:11437–11442PubMedGoogle Scholar
  8. Belkin AM, Stepp MA (2000) Integrins as receptors for laminins. Microscopy Res and Technique 51:280–301CrossRefGoogle Scholar
  9. Bernal F, Hartung HP, Kieseier BC (2005) Tissue mRNA expression in rat of newly described matrix metalloproteinases. Biol Res 38:267–271PubMedCrossRefGoogle Scholar
  10. Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–1037PubMedCrossRefGoogle Scholar
  11. Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nature 6:32–43Google Scholar
  12. Bonnemann CG, Laing NG (2004) Myopathies resulting from mutations in sarcomeric proteins. Curr Opin Neurology 17:529–537CrossRefGoogle Scholar
  13. Boppart MD, Burkin DJ, Kaufman SJ (2006) Alpha 7 beta 1-integrin regulates mechanotransduction and prevents skeletal muscle injury. Am J Physiol Cell Physiol 290:C1660–1665PubMedCrossRefGoogle Scholar
  14. Bortoluzzi S, Scannapieco P, Cestaro A, Danieli GA, Schiaffino S (2006) Computational reconstruction of the human skeletal muscle secretome. Proteins 62:776–792PubMedCrossRefGoogle Scholar
  15. Brandan E, Fuentes ME, Andrade W (1991) The proteoglycan decorin is synthesized and secreted by differentiated myotubes. Europ J Cell Biology 55:209–216Google Scholar
  16. Bussolino F, Valdembri D, Caccavari F, Serini G (2006) Semaphoring vascular morphogenesis. Endothelium 13:81–91PubMedCrossRefGoogle Scholar
  17. Carmeli E, Moas M, Reznick AZ, Coleman R (2004) Matrix metalloproteinases and skeletal muscle: a brief review. Muscle Nerve 29:191–197PubMedCrossRefGoogle Scholar
  18. Caruelle D, Mazouzi Z, Husmann I, Delbe J, Duchesnay A, Gautron J, Martelly I, Courty J (2004) Upregulation of HARP during in vitro myogenesis and rat soleus muscle regeneration. J Muscle Res Cell Motil 25:45–53PubMedCrossRefGoogle Scholar
  19. Casar JC, Cabello-Verrugio C, Olguin H, Aldunate R, Inestrosa NC, Brandan E (2004a) Heparan sulfate proteoglycans are increased during skeletal muscle regeneration: requirement of syndecan-3 for successful fiber formation. J Cell Sci 117:73–84CrossRefGoogle Scholar
  20. Casar JC, McKechnie BA, Fallon JR, Young MF, Brandan E (2004b) Transient up-regulation of biglycan during skeletal muscle regeneration: delayed fiber growth along with decorin increase in biglycan-deficient mice. Dev Biol 268:358–371CrossRefGoogle Scholar
  21. Chan J, O’Donoghue K, Gavina M, Torrente Y, Kennea N, Mehmet H, Stewart H, Watt DJ, Morgan JE, Fisk NM (2006) Galectin-1 induces skeletal muscle differentiation in human fetal mesenchymal stem cells and increases muscle regeneration. Stem Cells 24:1879–1891PubMedCrossRefGoogle Scholar
  22. Chinni C, de Niese MR, Jenkins AL, Pike RN, Bottomley SP, Mackie EJ (2000) Protease-activated receptor-2 mediates proliferative responses in skeletal myoblasts. J Cell Sci 113:4427–4433PubMedGoogle Scholar
  23. Chiquet-Ehrismann R (2004) Tenascins. Int J Biochem Cell Biol 36:986–990PubMedCrossRefGoogle Scholar
  24. Chiquet M, Fluck M (2003) Ectopic expression of tenascin-C. J Cell Sci 116:3851–3853PubMedCrossRefGoogle Scholar
  25. Chirco R, Liu XW, Jung KK, Kim HR (2006) Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev 25:99–113PubMedCrossRefGoogle Scholar
  26. Chua F, Sly PD, Laurent GJ (2005) Pediatric lung disease: from proteinases to pulmonary fibrosis. Pediatr Pulmonol 39:392–401PubMedCrossRefGoogle Scholar
  27. Coombe DR, Kett WC (2005) Heparin sulfate-protein interactions: therapeutic potential through structure function insights. Cell Mol Life Sci 62:410–424PubMedCrossRefGoogle Scholar
  28. Cooper DN, Massa SM, Barondes SH (1991) Endogenous muscle lectin inhibits myoblast adhesion to laminin. J Cell Biol 115:1437–1448PubMedCrossRefGoogle Scholar
  29. Cornelison DD, Wilcox-Adelman SA, Goetinck PF, Rauvala H, Rapraeger AC, Olwin BB (2004) Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration. Genes Dev 18:2231–2236PubMedCrossRefGoogle Scholar
  30. Cornelison DDW, Filla MS, Stanley HM, Rapraeger AC, Olwin BB (2001) Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev Biol 239:79–94PubMedCrossRefGoogle Scholar
  31. Dellas C, Loskuttof DJ (2005) Historical analysis of PAI-I from its discovery to its potential role in cell motility and disease. Thromb Haemost 93:631–640PubMedGoogle Scholar
  32. Dourdin N, Balcerzak D, Brustis JJ, Poussard JJ, Cottin P, Ducastaing A (1999) Potential m-calpain substrates during myoblast fusion. Exp Cell Res 246:433–442PubMedCrossRefGoogle Scholar
  33. Dourdin N, Brustis J-J, Balcerzak D, Elamrani N, Poussard S, Cottin P, Ducastaing A (1997) Myoblast fusion requires fibronectin degradation by exteriorized m-calpain. Exp Cell Res 235:385–394PubMedCrossRefGoogle Scholar
  34. Droguett R, Cabello-Verrugio C, Riquelme C, Brandan E (2006) Extracellular proteoglycans modify TGF-beta bio-availability attenuating its signaling during skeletal muscle differentiation. Matrix Biol 25:332–341PubMedCrossRefGoogle Scholar
  35. Echizenya M, Kondo S, Takahashi R, Oh J, Kawashima S, Kitayama H, Takahashi C, Noda M (2005) The membrane-anchored MMP-regulator RECK is a target of myogenic regulatory factors. Oncogene 24:5850–5857PubMedCrossRefGoogle Scholar
  36. Elson HF, Ingwall JS (1980) The cell substratum modulates skeletal muscle differentiation. J Supramol Struct 14:313–328PubMedCrossRefGoogle Scholar
  37. Fadic R, Mezzano V, Alvarez K, Cabrera D, Holmgren J, Brandan E (2006) Increase in decorin and biglycan in Duchenne Muscular Dystrophy: role of fibroblasts as cell source of these proteoglycans in the disease. J Cell Mol Med 10:758–769PubMedCrossRefGoogle Scholar
  38. Fiorotto ML, Lopez R, Oliver WT, Khan AS, Draghia-Akli R (2006) Transplacental transfer of a growth hormone-releasing hormone peptide from mother to fetus in the rat. DNA Cell Biol 25:429–437PubMedCrossRefGoogle Scholar
  39. Foster W, Li Y, Usas A, Somogyi G, Huard J (2003) Gamma interferon as an antifibrosis agent in skeletal muscle. J Orthop Res 21:798–804PubMedCrossRefGoogle Scholar
  40. Frieser M, Nockel H, Pausch F, Roder C, Hahn A, Deutzmann R, Sorokin LM (1997) Cloning of the mouse laminin alpha 4 cDNA. Expression in a subset of endothelium. Eur J Biochem 246:727–735PubMedCrossRefGoogle Scholar
  41. Fuentealba L, Carey DJ, Brandan E (1999) Antisense inhibition of syndecan-3 expression during skeletal muscle differentiation accelerates myogenesis through a basic fibroblast growth factor-dependent mechanism. J Biol Chem 274:37876–37884PubMedCrossRefGoogle Scholar
  42. Garcia AJ, Vega MD, Boettiger D (1999) Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation. Mol Biol Cell 10:785–798PubMedGoogle Scholar
  43. Gatchalian CL, Schachner M, Sanes J (1989) Fibroblasts that proliferate near denervated synaptic sites in skeletal muscle synthesize the adhesive molecules tenascin(J1),N-CAM,fibronectin and a heparin sulfate proteoglycan. J Cell Biol 108:1873–1890PubMedCrossRefGoogle Scholar
  44. Gelse K, Poschl E, Aigner T (2003) Collagens–structure, function, and biosynthesis. Adv Drug Deliv Rev 55:1531–1546PubMedCrossRefGoogle Scholar
  45. Goetsch SC, Hawke TJ, Gallardo TD, Richardson JA, Garry DJ (2003) Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiol Genomics 14:261–271PubMedGoogle Scholar
  46. Gosselin LE, Williams JE, Personius K, Farkas GA (2007) A comparison of factors associated with collagen metabolism in different skeletal muscles from dystrophic (mdx) mice: impact of pirfenidone. Muscle Nerve 35:208–216PubMedCrossRefGoogle Scholar
  47. Grounds MD (1998) Age-associated changes in the response of skeletal muscle cells to exercise and regeneration. Ann NYAcad Sci 854:78–91CrossRefGoogle Scholar
  48. Grounds MD, Davies MJ (1996) Chemotaxis in myogenesis. Basic Appl Myology 6:469–483Google Scholar
  49. Grounds MD, McGeachie JK, Davies MJ, Sorokin L, Maley MAL (1998) The expression of extracellular matrix during adult skeletal muscle regeneration: how the basement membrane, interstitium, and myogenic cells collaborate. Basic Appl Myology 8:129–141Google Scholar
  50. Grounds MD, Sorokin L, White J (2005) Strength at the extracellular matrix-muscle interface. Scand J Med Sci Sports 15:381–391PubMedCrossRefGoogle Scholar
  51. Grounds MD, White J, Rosenthal N, Bogoyevitch MA (2002) The role of stem cells in skeletal and cardiac muscle repair. J Histochem Cytochem 50:589–610PubMedGoogle Scholar
  52. Gulati AK, Reddi AH, Zalewski AA (1983a) Changes in the basement membrane zone component during skeletal muscle fiber degeneration and regeneration. J Cell Biol 97:957–962CrossRefGoogle Scholar
  53. Gulati AK, Zalewski AA, Reddi AH (1983b) An immunofluorescent study of the distribution of fibronectin and laminin during limb regeneration in the adult newt. Dev Biol 96:355–365CrossRefGoogle Scholar
  54. Gullberg D, Tiger C-F, Velling T (1999) Laminins during muscle development and in muscular dystrophies. Cell Mol Life Sci 56:442–460PubMedCrossRefGoogle Scholar
  55. Gutierrez Jea (2006) Changes in cell secreted and cell associated proteoglycan synthesis during conversion of myoblasts to osteoblasts in response to bone morphogenetic protein-2: role of decorin in cell response to BMP-2. J Cell Physiol 206:58–67PubMedCrossRefGoogle Scholar
  56. Hagios C, Brown-Luedi M, Chiquet-Ehrismann R (1999) Tenascin-Y, a component of distinctive connective tissues, supports muscle cell growth. Exp Cell Res 253:607–617PubMedCrossRefGoogle Scholar
  57. Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85:979–1000PubMedCrossRefGoogle Scholar
  58. Hartley RS, Yablonka-Reuveni Z (1990) Long term maintenance of primary myogenic cultures on a reconstituted basement membrane. In Vitro Cell Dev Biol 26:955–961PubMedCrossRefGoogle Scholar
  59. Hascall VC, Majors AK, De La Motte CA, Evanko SP, Wang A, Drazba JA, Strong SA, Wight TN (2004) Intracellular hyaluronan: a new frontier for inflammation? Biochim Biophys Acta 1673:3–12PubMedGoogle Scholar
  60. Hauschka SD, Konigsberg IR (1966) The influence of collagen on the development of muscle clones. Zoology 55:119–126Google Scholar
  61. Henriquez JP, Casar JC, Fuentealba L, Carey DJ, Brandan E (2002) Extracellular matrix histone H1 binds to perlecan, is present in regenerating skeletal muscle and stimulates myoblast proliferation. J Cell Sci 115:2041–2051PubMedGoogle Scholar
  62. Hewitson TD, Martic M, Kelynack KJ, Pagel CN, Mackie EJ, Becker GJ (2005) Thrombin is a pro-fibrotic factor for rat renal fibroblasts in vitro. Nephron Exp Nephrol 101:e42–e49PubMedCrossRefGoogle Scholar
  63. Hill E, Boontheekul T, Mooney DJ (2006) Designing scaffolds to enhance transplanted myoblast survival and migration. Tissue Eng 12:1295–1304PubMedCrossRefGoogle Scholar
  64. Hodgetts S, Radley H, Davies M, Grounds MD (2006) Reduced necrosis of dystrophic muscle by depletion of host neutrophils, or blocking TNFalpha function with Etanercept in mdx mice. Neuromuscul Disord 16:591–602PubMedCrossRefGoogle Scholar
  65. Houzelstein D, Goncalves IR, Fadden AJ, Sidhu SS, Cooper DN, Drickamer K, Leffler H, Poirier F (2004) Phylogenetic analysis of the vertebrate galectin family. Mol Biol Evol 21:1177–1187PubMedCrossRefGoogle Scholar
  66. Huijbregts J, White JD, Grounds MD (2001) The absence of MyoD in regenerating skeletal muscle affects the expression pattern of basement membrane, interstitial matrix and integrin molecules, consistent with delayed myotube formation. Acta Histochem 103:379–396PubMedCrossRefGoogle Scholar
  67. Iba K, Albrechtsen R, Gilpin B, Frohlich C, Loechel F, Zolkiewska A, Ishiguro K, Kojima T, Liu W, Langford JK, Sanderson RD, Brakebusch C, Fassler R, Wewer UM (2000) The cysteine-rich domain of human ADAM 12 supports cell adhesion through syndecans and triggers signaling events that lead to beta1 integrin-dependent cell spreading. J Cell Biol 149:1143–1156PubMedCrossRefGoogle Scholar
  68. Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J20:811–827PubMedCrossRefGoogle Scholar
  69. Jarvinen TA, Jarvinen TL, Kaariainen M, Kalimo H, Jarvinen M (2005) Muscle Injuries. Biology and treatment. Am J Sports Med 33:745–764PubMedCrossRefGoogle Scholar
  70. Jenniskens GJ, Veerkamp JH, Van Kuppevelt TH (2006) Heparan sulfates in skeletal muscle development and physiology. J Cell Physiol 206:283–294PubMedCrossRefGoogle Scholar
  71. Kami K, Senba E (2005) Galectin-1 is a novel factor that regulates myotube growth in regenerating skeletal muscles. Curr Drug Targets 6:395–405PubMedCrossRefGoogle Scholar
  72. Kanagawa M, Michele DE, Satz JS, Barresi R, Kusano H, Sasaki T, Timpl R, Henry MD, Campbell KP (2005) Disruption of perlecan binding and matrix assembly by post-translational or genetic disruption of dystroglycan function. FEBS Lett 579:4792–4796PubMedGoogle Scholar
  73. Khan ZA, Farhangkhoee H, Mahon JL, Bere L, Gonder JR, Chan BM, Unival S, Chakrabarti S (2006) Endothelins: regulators of extracellular matrix protein production in diabetes. Exp Biol Med231:1022–1029Google Scholar
  74. Kherif S, Lafuma C, Dehaupas M, Lachkar S, Fournier J-G, Verdiere-Sahuque M, Fardeau M, Alameddine HS (1999) Expression of matrix metalloproteinases 2 and 9 in regenerating skeletal muscle: a study in experimentally injured and mdx muscles. Dev Biol 205:158–170PubMedCrossRefGoogle Scholar
  75. Kjaer M (2004) Role of Extracellular Matrix in Adaptation of Tendon and Skeletal Muscle to Mechanical Loading. Physiol Rev 84:649–698PubMedCrossRefGoogle Scholar
  76. Kricker JA, Towne CL, Firth SM, Herington AC, Upton Z (2003) Structural and functional evidence for the interaction of insulin-like growth factors (IGFs) and IGF binding proteins with vitronectin. Endocrinology 144:2807–2815PubMedCrossRefGoogle Scholar
  77. Kujawa MJ, Pechak DG, Fiszman MY, Caplan AI (1986) Hyaluronic acid bonded to cell culture surfaces inhibits the program of myogenesis. Dev Biol 113:10–16PubMedCrossRefGoogle Scholar
  78. Kumar A, Mohan S, Newton J, Rehage M, Tran K, Baylink D, Qin X (2005) Pregnancy-associated plasma protein-A regulates myoblast proliferation and differentiation through an insulin-like growth factor-dependent mechanism. J Biol Chem 280:37782–37789PubMedCrossRefGoogle Scholar
  79. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro-o M (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833PubMedCrossRefGoogle Scholar
  80. Lafuste P, Sonnet C, Chazaud B, Dreyfus PA, Gherardi RK, Wewer UM, Authier FJ (2005) ADAM12 and α9β1 Integrin Are Instrumental in Human Myogenic Cell Differentiation. Mol Biol Cell 16:861–870PubMedCrossRefGoogle Scholar
  81. Larsen M, Artym VV, Green JA, UYamada KM (2006) The matrix reorganized: extracellular matrix remodeling and integrin signaling. Curr Opin Cell Biol 18:463–471PubMedCrossRefGoogle Scholar
  82. Lechner BE, Lim JH, Mercado ML, Fallon JR (2006) Developmental regulation of biglycan expression in muscle and tendon. Muscle Nerve 34:347–55PubMedCrossRefGoogle Scholar
  83. Liu FT, Rabinovich GA (2005) Galectins as modulators of tumour progression. Nat Rev Cancer 5:29–41PubMedCrossRefGoogle Scholar
  84. Lluri G, Jaworski DM (2005) Regulation of TIMP-2, MT1-MMP, and MMP-2 expression during C2C12 differentiation. Muscle Nerve 32:492–499PubMedCrossRefGoogle Scholar
  85. Loechel F, Fox JW, Murphy G, Albrechtsen R, Wewer UM (2000) ADAM 12-S cleaves IGFBP-3 and IGFBP-5 and is inhibited by TIMP-3. Biochem Biophys Res Commun 278:511–515PubMedCrossRefGoogle Scholar
  86. Lopez-Alemany R, Suelves M, Munoz-Canoves P (2003) Plasmin generation dependent on alpha-enolase-type plasminogen receptor is required for myogenesis. Thromb Haemost 90:724–733PubMedGoogle Scholar
  87. Mackie EJ, Pagel CN, Smith R, de Niese MR, Song SJ, Pike RN (2002) Protease-activated receptors: a means of converting extracellular proteolysis into intracellular signals. IUBMB Life 53:277–281PubMedGoogle Scholar
  88. Mackie EJ, Tucker RP (1999) The tenascin-C knockout revisited. J Cell Sci 112:3847–3853PubMedGoogle Scholar
  89. Maile LA, Busby WH, Sitko K, Capps BE, Sergent T, Badley-Clarke J, Ling Y, Clemmons DR (2006) The heparin binding domain of vitronectin is the region that is required to enhance insulin-like growth factor-I signaling. Mol Endocrinol 20:881–892PubMedCrossRefGoogle Scholar
  90. Majors AK, Austin RC, de la Motte CA, Pyeritz RE, Hascall VC, Kessler SP, Sen G, Strong SA (2003) Endoplasmic reticulum stress induces hyaluronan deposition and leukocyte adhesion. J Biol Chem 278:47223–47231PubMedCrossRefGoogle Scholar
  91. Maley MAL, Davies MJ, Grounds MD (1995) Extracellular matrix, growth factors, genetics: Their influence on cell proliferation and myotube formation in primary cultures of adult mouse skeletal muscle. Exp Cell Res 219:169–179PubMedCrossRefGoogle Scholar
  92. Martin PT (2006) Mechanisms of Disease: congenital muscular dystrophies-glycosylation takes center stage. Nat Clin Pract Neurol 2:222–230PubMedCrossRefGoogle Scholar
  93. Meddahi A, Bree F, Papy-Garcia D, Gautron J, Barritault D, Caruelle JP (2002) Pharmacological studies of RGTA(11), a heparan sulfate mimetic polymer, efficient on muscle regeneration. J Biomed Mater Res 62:525–531PubMedCrossRefGoogle Scholar
  94. Miura T, Kishioka Y, Wakamatsu J, Hattori A, Hennebry A, Berry CJ, Sharma M, Kambadur R, Nishimura T (2006) Decorin binds myostatin and modulates its activity to muscle cells. Biochem Biophys Res Commun 340:675–680PubMedCrossRefGoogle Scholar
  95. Moghadaszadeh B, Albrechtsen R, Guo L, Zaik M, Kawaguchi N, Borup RH, FKronquist P, Schroder HD, Davies KE, Voit T, Neielson FC, Engvall E, Wewer UM (2003) Compensation for dystrophin-deficiency: ADAM 12 overexpression in skeletal muscle results in increased alpha 7 integrin, utrophin, and associated glycoproteins. Hum Mol Genet 12:2467–2493PubMedCrossRefGoogle Scholar
  96. Molteni R, Fabbri M, Bender JR, Pardi R (2006) Pathophysiology of leukocyte-tissue interactions. Curr Opin Cell Biol 18:491–498PubMedCrossRefGoogle Scholar
  97. Myllyharju J, Kivirikko KI (2004) Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet 20:33–43PubMedCrossRefGoogle Scholar
  98. Nagamine Y, Medcalf RL, Munoz-Canoves P (2005) Transcriptional and posttranscriptional regulation of the plasminogen activator system. Thromb Haemost 93:661–675PubMedGoogle Scholar
  99. Ocalan M, Goodman SL, Kuhl U, Hauschka SD, von der Mark K (1988) Laminin alters cell shape and stimulates motility and proliferation of murine skeletal myoblasts. Dev Biol 125:158–167PubMedCrossRefGoogle Scholar
  100. Ohtake Y, Tojo H, Seiki M (2006) Multifunctional roles of MT1-MMP in myofiber formation and morphostatic maintenance of skeletal muscle. J Cell Sci 119:3822–3832PubMedCrossRefGoogle Scholar
  101. Olwin BB, Rapraeger A (1992) Repression of myogenic differentiation by aFGF, bFGF, and K-FGF is dependent on cellular heparan sulfate. J Cell Biol 118:631–639PubMedCrossRefGoogle Scholar
  102. Overall CM, Blobel CP (2007) In search of partners: linking extracellular proteases to substrates. Nat Rev Mol Cell Biol 8:245–57PubMedCrossRefGoogle Scholar
  103. Papadimitriou JM, Robertson TA, Mitchell CA, Grounds MD (1990) The process of new plasmalemma formation in focally injured skeletal muscle fibres. J Struct Biol 103:(2) 124–134CrossRefGoogle Scholar
  104. Pescatori M, Broccolini A, Minetti C, Bertini E, Bruno C, D’Amico A, Bernardini C, Mirabella Ddagger Ddagger M, Silvestri G, Giglio V, Modoni A, Pedemonte M, Tasca G, Galluzzi G, Mercuri E, Tonali PA, Ricci E (2007) Gene expression profiling in the early phases of DMD: a constant molecular signature characterizes DMD muscle from early postnatal life throughout disease progression. FASEB J 21:1210–1226PubMedCrossRefGoogle Scholar
  105. Pike RN, Buckle AM, le Bonniec BF, Church FC (2005) Control of the coagulation system by serpins. FEBS J 272:4842–4851PubMedCrossRefGoogle Scholar
  106. Radley HG, Grounds MD (2006) Cromolyn administration (to block mast cell degranulation) reduces necrosis of dystrophic muscle in mdx mice. Neurobiol Disord 23:387–397Google Scholar
  107. Rahmani M, Wong BW, Ang L, Cheung CC, Carthy JM, Walinski H, McManus BM (2006) Versican: signaling to transcriptional control pathways. Can J Physiol Pharmacol 84:77–92PubMedCrossRefGoogle Scholar
  108. Rapraeger AC, Krufka A, Olwin BB (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252:1705–1708PubMedCrossRefGoogle Scholar
  109. Ricard-Blum S, Ruggiero F (2005) The collagen superfamily: from the extracellular matrix to the cell membrane. Pathol Biol (Paris) 53:430–442Google Scholar
  110. Ringelmann B, Roder C, Hallmann R, Maley M, Davies M, Grounds M, Sorokin L (1999) Expression of Laminin α1, α2, α4 and α5 chains, fibronectin and tenascin-C in skeletal muscle of dystrophic 129ReJ dy/dy mice. Exp Cell Res 246:165–182PubMedCrossRefGoogle Scholar
  111. Roberts P, McGeachie JK (1990) Endothelial cell activation during angiogenesis in freely transplanted skeletal muscles in mice and its relationship to the onset of myogenesis. J Anat 169:197–207PubMedGoogle Scholar
  112. Robertson TA, Papadimitriou JM, Grounds MD (1993) Fusion of myogenic cells to the newly sealed region of damaged myofibres in skeletal muscle regeneration. Neuropath Appl Neurobiol 19:350–358CrossRefGoogle Scholar
  113. Salimena MC, Lagrota-Candido J, Quirico-Santos Tl (2004) Gender dimorphism influences extracellular matrix expression and regeneration of muscular tissue in mdx dystrophic mice. Histochem Cell Biol 122:435–444PubMedCrossRefGoogle Scholar
  114. Sarasa-Renedo A, Chiquet M (2005) Mechanical signals regulating extracellular matrix gene expression in fibroblasts. Scand J Med Sci Sports 15:223–230PubMedCrossRefGoogle Scholar
  115. Sato K, Li Y, Foster W, Fukushima K, Badlani N, Adachi N, Usas A, Fu FH, Huard J (2003) Improvement of muscle healing through enhancement of muscle regeneration and prevention of fibrosis. Muscle Nerve 28:365–372PubMedCrossRefGoogle Scholar
  116. Shafat I, Vlodavsky I, Ilan N (2006) Characterization of mechanisms involved in secretion of active heparanase. J Biol Chem 281:23804–12811PubMedCrossRefGoogle Scholar
  117. Shavlakadze T, Grounds MD (2006) Of bears, frogs, meat, mice and men: insights into the complexity of factors affecting skeletal muscle atrophy/hypertrophy and myogenesis/adipogenesis. BioEssays 28: 994–1009PubMedCrossRefGoogle Scholar
  118. Shavlakadze T, Grounds MD (2003) Theraputic interventions for age-related muscle wasting: importance of innervation and exercise for preventing sarcopenia. In Rattan S, ed. Modulating aging and longevity. The Netherlands, Kluwer Academic. 139–166Google Scholar
  119. Shefer G, Yablonka-Reuveni Z (2007) The ins and auts of satellite cell myogenesis; the role of the ruling growth factors. Schiaffino S, Partridge T, (eds) Skeletal muscle Repair and Regeneration. New York, springer. Chapter 6, pp 107–143.Google Scholar
  120. Shen W, Li Y, Tang Y, Cummins J, Huard J (2005) NS-398, a cyclooxygenase-2-specific inhibitor, delays skeletal muscle healing by decreasing regeneration and promoting fibrosis. Am J Pathol 167:1105–1117PubMedGoogle Scholar
  121. Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24:4353–4364PubMedCrossRefGoogle Scholar
  122. Slater CR, Schiaffino S (2007) Innervation of regenerating muscle. In Schiaffino S, Partridge T, eds. Skeletal Muscle Repair and Regeneration. New York, Springer. Chapter 14, pp XXXGoogle Scholar
  123. Smythe GM, Lai MC, Grounds MD, Rakoczy P (2002) Adeno-associated virus-mediated transfer of vascular endothelial growth factor in skeletal muscle prior to transplantation promotes revascularisation of the regenerating skeletal muscle. Tissue Engin 8:879–891CrossRefGoogle Scholar
  124. Sorokin LM, Maley MAL, Moch H, von der Mark H, von der Mark K, Cadalbert L, Karosi S, Davies MJ, McGeachie JK, Grounds MD (2000) Laminin α4 and integrin α6 are upregulated in regenerating dy/dy skeletal muscle: comparative expression of laminin and integrin isoforms in muscles regenerating after crush injury. Exp Cell Res 256:500–514PubMedCrossRefGoogle Scholar
  125. Stringer SE (2006) The role of heparan sulphate proteoglycans in angiogenesis. Biochem Soc Trans 34:451–453PubMedCrossRefGoogle Scholar
  126. Suelves M, Vidal B, Ruiz V, Baeza-Raja B, Doaz-Ramos A, Cuartas I, Lluis F, Parra M, Jardi M, Lopez-Alemany R, Serrano AL, Munoz-Canovez P (2005) The plasminogen activation system in skeletal muscle regeneration: antagonistic roles of urokinase-type plasminigen activator (uPA) and its inhibitor (PAI-1). Front Biosci 10:2978–2985PubMedCrossRefGoogle Scholar
  127. Tidball JG (2007) Inflammation in skeletal muscle regeneration. In Schiaffino. S, Partridge T, eds. Skeletal Muscle Repair and Regeneration. New York, Springer. Chapter 12, pp XXXGoogle Scholar
  128. Tidball JG (1991) Force transmission across muscle cell membranes. J Biomech 24:43–52PubMedCrossRefGoogle Scholar
  129. Velleman SG, Liu X, Coy CS, McFarland DC (2004) Effects of syndecan-1 and glypican on muscle cell proliferation and differentiation: implications for possible functions during myogenesis. Poult Sci 83:1020–1027PubMedGoogle Scholar
  130. Wang S, Voisin MB, Larbi KY, Dangerfield J, Scheiermann C, Tran M, Maxwell PH, Sorokin L, Nourshargh S (2006) Venular basement membranes contain specific matrix protein low expression regions that act as exit points for emigrating neutrophils. J Exp Med 203:1519–1532PubMedCrossRefGoogle Scholar
  131. Watt DJ, Jones GE, Goldring K (2004) The involvement of galectin-1 in skeletal muscle determination, differentiation and regeneration. Glycoconj J 19:615–619PubMedCrossRefGoogle Scholar
  132. Wewer U, Albrechrtsen R, Engvall E (2005) ADAM12: the long and the short of it. In Hooper NM, Lendeckel U, (eds.) The ADAM Family of Proteases. Proteases in Biology and Disease. Vol 4. Springer, The Netherlands pp 123–146.CrossRefGoogle Scholar
  133. Whitehead NP, Yeung EW, Allen DG (2006) Muscle damage in mdx (dystrophic) mice: role of calcium and reactive oxygen species. Clin Exp Pharmacol Physiol 33:657–662PubMedCrossRefGoogle Scholar
  134. Wiberg C, Heinegard D, Wenglen C, Timpl R, Morgelin M (2002) Biglycans organizes collagen VI into hexagonal-like networks resembling tissue structures. J Biol Chem 277:49120–49126PubMedCrossRefGoogle Scholar
  135. Yoshimura M (1985) Changes of hyaluronic acid synthesis during differentiation of myogenic cells and its relation to transformation of myoblasts by Rous sarcoma virus. Cell Differ 16:175–185PubMedCrossRefGoogle Scholar
  136. Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54:1177–1191PubMedCrossRefGoogle Scholar
  137. Zanotti S, Negri T, Cappelletti C, Bernasconi P, Canioni E, Di Blasi C, Pegoraro E, Angelini C, Ciscato P, Prelle A, Mantegazza R, Morandi, Mora M (2005) Decorin and biglycan expression is differentially altered in several muscular dystrophies. Brain 128:2546–2555PubMedCrossRefGoogle Scholar
  138. Zimowska M, Szczepankowska D, Streminska W, Papy D, Tournaire MC, Gautron J, Barritault D, Moraczewski J, Martelly I (2001) Heparan sulfate mimetics modulate calpain activity during rat Soleus muscle regeneration. J Cell Physiol 188:178–187PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Miranda D. Grounds
    • 1
  1. 1.School of Anatomy & Human BiologyThe University of WesternAustralia

Personalised recommendations