Innervation of Regenerating Muscle

  • Clarke R. Slater
  • Stefano Schiaffino
Part of the Advances in Muscle Research book series (ADMR, volume 3)


Motor Neuron Soleus Muscle Extensor Digitorum Longus Regenerate Muscle Motor Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aigner L, Arber S, Kapfhammer JP, Laux T, Schneider C, Botteri F, Brenner HR, Caroni P (1995) Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell 83:269–278PubMedCrossRefGoogle Scholar
  2. Barbier J, Popoff MR, Molgo J (2004) Degeneration and regeneration of murine skeletal neuromuscular junctions after intramuscular injection with a sublethal dose of Clostridium sordellii lethal toxin. Infect Immun 72:3120–3128PubMedCrossRefGoogle Scholar
  3. Bennett MR, Florin T, Woog R (1974) The formation of synapses in regenerating mammalian striated muscle. J Physiol 238:79–92PubMedGoogle Scholar
  4. Bennett MR, McLachlan EM, Taylor RS (1973) The formation of synapses in reinnervated mammalian striated muscle. J Physiol 233:481–500PubMedGoogle Scholar
  5. Benoit PW, Belt WD (1970) Destruction and regeneration of skeletal muscle after treatment with a local anaesthetic, bupivacaine (Marcaine). J Anat 107:547–556PubMedGoogle Scholar
  6. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3:1014–1019PubMedCrossRefGoogle Scholar
  7. Brenner HR, Herczeg A, Slater CR (1992) Synapse-specific expression of acetylcholine receptor genes and their products at original synaptic sites in rat soleus muscle fibres regenerating in the absence of innervation. Development 116:41–53PubMedGoogle Scholar
  8. Bulfield G, Siller WG, Wight PA, Moore KJ (1984) X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A 81:1189–1192PubMedCrossRefGoogle Scholar
  9. Burden SJ, Sargent PB, McMahan UJ (1979) Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve. J Cell Biol 82:412–425PubMedCrossRefGoogle Scholar
  10. Butler-Browne GS, Bugaisky LB, Cuenoud S, Schwartz K, Whalen RG (1982) Denervation of newborn rat muscle does not block the appearance of adult fast myosin heavy chain. Nature 299:830–833PubMedCrossRefGoogle Scholar
  11. Carlson BM, Faulkner JA (1988) Reinnervation of long-term denervated rat muscle freely grafted into an innervated limb. Exp Neurol 102:50–56PubMedCrossRefGoogle Scholar
  12. Caroni P, Schneider C, Kiefer MC, Zapf J (1994) Role of muscle insulin-like growth factors in nerve sprouting:suppression of terminal sprouting in paralyzed muscle by IGF-binding protein 4. J Cell Biol 125:893–902PubMedCrossRefGoogle Scholar
  13. Coers C, Woolf AL (1959) The innervation of muscle: a biopsy study. Oxford, BlackwellGoogle Scholar
  14. Cohen I, Rimer M, Lømo T, McMahan UJ (1997) Agrin-induced postsynaptic-like apparatus in skeletal muscle fibers in vivo. Mol Cell Neurosci 9:237–253PubMedCrossRefGoogle Scholar
  15. d’Albis A, Weinman J, Mira JC, Janmot C, Couteaux R (1987) The regulator role of thyroid hormones in myogenesis. Analysis of isoforms of myosin in muscular regeneration. C R Acad Sci III 305:697–702PubMedGoogle Scholar
  16. Dimitropoulou A, Bixby JL (2005) Motor neurite outgrowth is selectively inhibited by cell surface MuSK and agrin. Mol Cell Neurosci 28:292–302PubMedCrossRefGoogle Scholar
  17. Donovan CM, Faulkner JA (1987) Plasticity of skeletal muscle: regenerating fibers adapt more rapidly than surviving fibers. J Appl Physiol 62:2507–2511PubMedGoogle Scholar
  18. Duchen LW (1970) Changes in motor innervation and cholinesterase localization induced by botulinum toxin in skeletal muscle of the mouse: differences between fast and slow muscles. J Neurol Neurosurg Psychiatry 33:40–54PubMedGoogle Scholar
  19. Duchen LW, Excell BJ, Patel R, Smith B (1974) Changes in motor end-plates resulting from muscle fibre necrosis and regeneration. A light and electron microscopic study of the effects of the depolarizing fraction (cardiotoxin) of Dendroaspis jamesoni venom. J Neurol Sci 21:391–417PubMedCrossRefGoogle Scholar
  20. Dunaevsky A, Connor EA (1995) Long-term maintenance of presynaptic function in the absence of target muscle fibers. J Neurosci 15:6137–6144PubMedGoogle Scholar
  21. Durbeej M, Campbell KP (2002) Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr Opin Genet Dev 12:349–361PubMedCrossRefGoogle Scholar
  22. Erzen I, Primc M, Janmot C, Cvetko E, Sketelj J, d’Albis A (1999) Myosin heavy chain profiles in regenerated fast and slow muscles innervated by the same motor nerve become nearly identical. Histochem J 31:277–83PubMedCrossRefGoogle Scholar
  23. Esser K, Gunning P, Hardeman E (1993) Nerve-dependent and -independent patterns of mRNA expression in regenerating skeletal muscle. Dev Biol 159:173–83PubMedCrossRefGoogle Scholar
  24. Faulkner JA, Markley JM Jr, McCully KK, Watters CR, White TP (1983) Characteristics of cat skeletal muscles grafted with intact nerves or with anastomosed nerves. Exp Neurol 80:682–696PubMedCrossRefGoogle Scholar
  25. Gautam M, DeChiara TM, Glass DJ, Yancopoulos GD, Sanes JR (1999) Distinct phenotypes of mutant mice lacking agrin, MuSK, or rapsyn. Brain Res Dev Brain Res 114:171–178PubMedCrossRefGoogle Scholar
  26. Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH, Merlie JP, Sanes JR (1996) Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85:525–535PubMedCrossRefGoogle Scholar
  27. Glass DJ, Bowen DC, Stitt TN, Radziejewski C, Bruno J, Ryan TE, Gies DR, Shah S, Mattsson K, Burden SJ, DiStefano PS, Valenzuela DM, DeChiara TM, Yancopoulos GD (1996) Agrin acts via a MuSK receptor complex. Cell 85:513–523PubMedCrossRefGoogle Scholar
  28. Glicksman MA, Sanes JR (1983) Differentiation of motor nerve terminals formed in the absence of muscle fibres. J Neurocytol 12:661–671PubMedCrossRefGoogle Scholar
  29. Goldman D, Carlson BM, Staple J (1991) Induction of adult-type nicotinic acetylcholine receptor gene expression in noninnervated regenerating muscle. Neuron 7:649–658PubMedCrossRefGoogle Scholar
  30. Grubb BD, Harris JB, Schofield IS (1991) Neuromuscular transmission at newly formed neuromuscular junctions in the regenerating soleus muscle of the rat. J Physiol 441:405–421PubMedGoogle Scholar
  31. Gutmann E, Young JZ (1944) The reinnervation of muscle after various periods of atrophy. J Anat 78:15–43PubMedGoogle Scholar
  32. Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ (2001) The architecture of active zone material at the frog’s neuromuscular junction. Nature 409:479–484PubMedCrossRefGoogle Scholar
  33. Hennig R, Lømo T (1985) Firing patterns of motor units in normal rats. Nature 314:164–166PubMedCrossRefGoogle Scholar
  34. Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81:275–300PubMedCrossRefGoogle Scholar
  35. Hoch W, Ferns M, Campanelli JT, Hall ZW, Scheller RH (1993) Developmental regulation of highly active alternatively spliced forms of agrin. Neuron 11:479–490PubMedCrossRefGoogle Scholar
  36. Hunter DD, Porter BE, Bulock JW, Adams SP, Merlie JP, Sanes JR (1989a) Primary sequence of a motor neuron-selective adhesive site in the synaptic basal lamina protein S-laminin. Cell 59:905–913CrossRefGoogle Scholar
  37. Hunter DD, Shah V, Merlie JP, Sanes JR (1989b) A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature 338:229–234CrossRefGoogle Scholar
  38. Jansen JK, Lømo T, Nicolaysen K, Westgaard RH (1973) Hyperinnervation of skeletal muscle fibers: dependence on muscle activity. Science 181:559–561PubMedCrossRefGoogle Scholar
  39. Jerkovic R, Argentini C, Serrano-Sanchez A, Cordonnier C, Schiaffino S (1997) Early myosin switching induced by nerve activity in regenerating slow skeletal muscle. Cell Struct Funct 22:147–153PubMedCrossRefGoogle Scholar
  40. Jirmanova I (1975) Ultrastructure of motor end-plates during pharmacologically-induced degeneration and subsequent regeneration of skeletal muscle. J Neurocytol 4:141–155PubMedCrossRefGoogle Scholar
  41. Jirmanova I, Thesleff S (1972) Ultrastructural study of experimental muscle degeneration and regeneration in the adult rat. Z Zellforsch Mikrosk Anat 131:77–97PubMedCrossRefGoogle Scholar
  42. Jirmanova I, Thesleff S (1976) Motor end-plates in regenerating rat skeletal muscle exposed to botulinum toxin. Neuroscience 1:345–347PubMedCrossRefGoogle Scholar
  43. Jo SA, Burden SJ (1992) Synaptic basal lamina contains a signal for synapse-specific transcription. Development 115:673–680PubMedGoogle Scholar
  44. Kalhovde JM, Jerkovic R, Sefland I, Cordonnier C, Calabria E, Schiaffino S, Lømo T (2005) ’Fast’ and ’slow’ muscle fibres in hindlimb muscles of adult rats regenerate from intrinsically different satellite cells. J Physiol 562:847–857PubMedCrossRefGoogle Scholar
  45. Korneliussen H, Sommerschild H (1976) Ultrastructure of the new neuromuscular junctions formed during reinnervation of rat soleus muscle by a ’foreign’ nerve. Cell Tissue Res 167:439–452PubMedCrossRefGoogle Scholar
  46. Letinsky MS, Fischbeck KH, McMahan UJ (1976) Precision of reinnervation of original postsynaptic sites in frog muscle after a nerve crush. J Neurocytol 5:691–718PubMedCrossRefGoogle Scholar
  47. Lømo T, Slater CR (1978) Control of acetylcholine sensitivity and synapse formation by muscle activity. J Physiol 275:391–402PubMedGoogle Scholar
  48. Love FM, Thompson WJ (1999) Glial cells promote muscle reinnervation by responding to activity- dependent postsynaptic signals. J Neurosci 19:10390–10396PubMedGoogle Scholar
  49. Lupa MT, Caldwell JH (1994) Sodium channels aggregate at former synaptic sites in innervated and denervated regenerating muscles. J Cell Biol 124:139–147PubMedCrossRefGoogle Scholar
  50. Lyons PR, Slater CR (1991) Structure and function of the neuromuscular junction in young adult mdx mice. J Neurocytol 20:969–981PubMedCrossRefGoogle Scholar
  51. Magill-Solc C, McMahan UJ (1988) Motor neurons contain agrin-like molecules. J Cell Biol 107:1825–1833PubMedCrossRefGoogle Scholar
  52. Magill-Solc C, McMahan UJ (1990) Agrin-like molecules in motor neurons. J Physiol (Paris) 84:78–81Google Scholar
  53. McCullagh KJ, Calabria E, Pallafacchina G, Ciciliot S, Serrano AL, Argentini C, Kalhovde JM, Lømo T, Schiaffino S (2004) NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching. Proc Natl Acad Sci U S A 101:10590–10595PubMedCrossRefGoogle Scholar
  54. McMahan UJ (1990) The agrin hypothesis. Cold Spring Harb Symp Quant Biol 55:407–418PubMedGoogle Scholar
  55. McMahan UJ, Slater CR (1984) The influence of basal lamina on the accumulation of acetylcholine receptors at synaptic sites in regenerating muscle. J Cell Biol 98:1453–1473PubMedCrossRefGoogle Scholar
  56. McMahan UJ, Wallace BG (1989) Molecules in basal lamina that direct the formation of synaptic specializations at neuromuscular junctions. Dev Neurosci 11:227–247PubMedCrossRefGoogle Scholar
  57. Meier T, Hauser DM, Chiquet M, Landmann L, Ruegg MA, Brenner HR (1997) Neural agrin induces ectopic postsynaptic specializations in innervated muscle fibers. J Neurosci 17:6534–6544PubMedGoogle Scholar
  58. Miledi R (1960) Properties of regenerating neuromuscular synapses in the frog. J Physiol 154:190–205PubMedGoogle Scholar
  59. Mitchell PO, Pavlath GK (2004) Skeletal muscle atrophy leads to loss and dysfunction of muscle precursor cells. Am J Physiol Cell Physiol 287:1753–1762CrossRefGoogle Scholar
  60. Moore C, Leu M, Muller U, Brenner HR (2001) Induction of multiple signaling loops by MuSK during neuromuscular synapse formation. Proc Natl Acad Sci U S A 98:14655–14660PubMedCrossRefGoogle Scholar
  61. Mozdziak PE, Pulvermacher PM, Schultz E (2001) Muscle regeneration during hindlimb unloading results in a reduction in muscle size after reloading. J Appl Physiol 91:183–190PubMedGoogle Scholar
  62. Murgia M, Serrano AL, Calabria E, Pallafacchina G, Lømo T, Schiaffino S (2000) Ras is involved in nerve-activity-dependent regulation of muscle genes. Nat Cell Biol 2:142–147PubMedCrossRefGoogle Scholar
  63. Nagel A, Lehmann-Horn F, Engel AG (1990) Neuromuscular transmission in the mdx mouse. Muscle Nerve 13:742–749PubMedCrossRefGoogle Scholar
  64. Nitkin RM, Smith MA, Magill C, Fallon JR, Yao YM, Wallace BG, McMahan UJ (1987) Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J Cell Biol 105:2471–2478PubMedCrossRefGoogle Scholar
  65. Okada K, Inoue A, Okada M, Murata Y, Kakuta S, Jigami T, Kubo S, Shiraishi H, Eguchi K, Motomura M, Akiyama T, Iwakura Y, Higuchi O, Yamanashi Y (2006) The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science 312:1802–1805PubMedCrossRefGoogle Scholar
  66. Pallafacchina G, Calabria E, Serrano AL, Kalhovde JM, Schiaffino S (2002) A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci U S A 99:9213–9218PubMedCrossRefGoogle Scholar
  67. Pette D, Sketelj J, Skorjanc D, Leisner E, Traub I, Bajrovic F (2002) Partial fast-to-slow conversion of regenerating rat fast-twitch muscle by chronic low-frequency stimulation. J Muscle Res Cell Motil 23:215–221PubMedCrossRefGoogle Scholar
  68. Porter BE, Weis J, Sanes JR (1995) A motoneuron-selective stop signal in the synaptic protein S-laminin. Neuron 14:549–559PubMedCrossRefGoogle Scholar
  69. Reist NE, Magill C, McMahan UJ (1987) Agrin-like molecules at synaptic sites in normal, denervated, and damaged skeletal muscles. J Cell Biol 105:2457–2469PubMedCrossRefGoogle Scholar
  70. Reynolds ML, Woolf CJ (1992) Terminal Schwann cells elaborate extensive processes following denervation of the motor endplate. J Neurocytol 21:50–66PubMedCrossRefGoogle Scholar
  71. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3:1009–1013PubMedCrossRefGoogle Scholar
  72. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412PubMedCrossRefGoogle Scholar
  73. Sanes JR (1989) Extracellular matrix molecules that influence neural development. Annu Rev Neurosci 12:491–516PubMedCrossRefGoogle Scholar
  74. Sanes JR, Marshall LM, McMahan UJ (1978) Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J Cell Biol 78:176–198PubMedCrossRefGoogle Scholar
  75. Sartore S, Gorza L, Schiaffino S (1982) Fetal myosin heavy chains in regenerating muscle. Nature 298:294–296PubMedCrossRefGoogle Scholar
  76. Schiaffino S, Sandri M, Murgia M (2006) Signalling pathways controlling muscle fiber size and type in response to nerve activity. In: Bottinelli R, Reggiani C (eds) Skeletal muscle plasticity in health and disease. From genes to whole muscle. Berlin, Springer, pp 91–119CrossRefGoogle Scholar
  77. Schmalbruch H (1977) Regeneration of soleus muscles of rat autografted in toto as studied by electron microscopy. Cell Tissue Res 177:159–180PubMedCrossRefGoogle Scholar
  78. Serrano AL, Murgia M, Pallafacchina G, Calabria E, Coniglio P, Lømo T, Schiaffino S (2001) Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. Proc Natl Acad Sci U S A 98:13108–13113PubMedCrossRefGoogle Scholar
  79. Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244:1578–1580PubMedCrossRefGoogle Scholar
  80. Son YJ, Trachtenberg JT, Thompson WJ (1996) Schwann cells induce and guide sprouting and reinnervation of neuromuscular junctions. Trends Neurosci 19:280–285PubMedCrossRefGoogle Scholar
  81. Stocksley MA, Awad SS, Young C, Lightowlers RN, Brenner HR, Slater CR (2005) Accumulation of Na(V)1 mRNAs at differentiating postsynaptic sites in rat soleus muscles. Mol Cell Neurosci 28:694–702PubMedCrossRefGoogle Scholar
  82. Strochlic L, Cartaud A, Mejat A, Grailhe R, Schaeffer L, Changeux JP, Cartaud J (2004) 14-3-3 gamma associates with muscle specific kinase and regulates synaptic gene transcription at vertebrate neuromuscular synapse. Proc Natl Acad Sci U S A 101:18189–18194PubMedCrossRefGoogle Scholar
  83. Sunderland WJ, Son YJ, Miner JH, Sanes JR, Carlson SS (2000) The presynaptic calcium channel is part of a transmembrane complex linking a synaptic laminin (alpha4beta2gamma1) with non-erythroid spectrin. J Neurosci 20:1009–1019PubMedGoogle Scholar
  84. Takahashi A, Kureishi Y, Yang J, Luo Z, Guo K, Mukhopadhyay D, Ivashchenko Y, Branellec D, Walsh K (2002) Myogenic Akt signaling regulates blood vessel recruitment during myofiber growth. Mol Cell Biol 22:4803–4814PubMedCrossRefGoogle Scholar
  85. Taxt T (1983) Cross-innervation of fast and slow-twitch muscles by motor axons of the sural nerve in the mouse. Acta Physiol Scand 117:331–341PubMedCrossRefGoogle Scholar
  86. Torres LF, Duchen LW (1987) The mutant mdx: inherited myopathy in the mouse. Morphological studies of nerves, muscles and end-plates. Brain 110(Pt 2):269–299PubMedCrossRefGoogle Scholar
  87. Vracko R, Benditt EP (1972) Basal lamina: the scaffold for orderly cell replacement. Observations on regeneration of injured skeletal muscle fibers and capillaries. J Cell Biol 55:406–419PubMedCrossRefGoogle Scholar
  88. Whalen RG, Harris JB, Butler-Browne GS, Sesodia S (1990) Expression of myosin isoforms during notexin-induced regeneration of rat soleus muscles. Dev Biol 141:24–40PubMedCrossRefGoogle Scholar
  89. Womble MD (1986) The clustering of acetylcholine receptors and formation of neuromuscular junctions in regenerating mammalian muscle grafts. Am J Anat 176:191–205PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Clarke R. Slater
    • 1
  • Stefano Schiaffino
    • 2
  1. 1.Institute of Neuroscience Faculty of Medical SciencesUniversity of Newcastle upon Tyne Framlington PlaceNewcastle upon TyneUK
  2. 2.Department of Biomedical SciencesUniversity of Padova35121 PadovaItaly

Personalised recommendations