Advertisement

The Muscle Satellite Cell: The Story of a Cell on the Edge!

  • Peter S. Zammit
Chapter
Part of the Advances in Muscle Research book series (ADMR, volume 3)

Keywords

Satellite Cell Muscle Regeneration Myogenic Cell Muscle Satellite Cell Satellite Cell Activation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allbrook D (1962) An electron microscopic study of regenerating skeletal muscle. J Anat 96:137–152PubMedGoogle Scholar
  2. Armand O, Boutineau AM, Mauger A, Pautou MP, Kieny M (1983) Origin of satellite cells in avian skeletal muscles. Arch Anat Microsc Morphol Exp 72:163–181PubMedGoogle Scholar
  3. Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159:123–134PubMedCrossRefGoogle Scholar
  4. Bader CR, Bertrand D, Cooper E, Mauro A (1988) Membrane currents of rat satellite cells attached to intact skeletal muscle fibers. Neuron 1:237–240PubMedCrossRefGoogle Scholar
  5. Baroffio A, Hamann M, Bernheim L, Bochaton-Piallat ML, Gabbiani G, Bader CR (1996) Identification of self-renewing myoblasts in the progeny of single human muscle satellite cells. Differentiation 60:47–57PubMedCrossRefGoogle Scholar
  6. Basson MD, Carlson BM (1980) Myotoxicity of single and repeated injections of mepivacaine (Carbocaine) in the rat. Anesth Analg 59:275–282PubMedCrossRefGoogle Scholar
  7. Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA, Zammit PS (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151:1221–1234PubMedCrossRefGoogle Scholar
  8. Beauchamp JR, Morgan JE, Pagel CN, Partridge TA (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J Cell Biol 144:1113–1122PubMedCrossRefGoogle Scholar
  9. Bintliff S, Walker BE (1960) Radioautographic study of skeletal muscle regeneration. Am J Anat 106:233–245CrossRefGoogle Scholar
  10. Bischoff R (1986) Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol 115:129–139PubMedCrossRefGoogle Scholar
  11. Bischoff R (1975) Regeneration of single skeletal muscle fibers in vitro. Anat Rec 182:215–235PubMedCrossRefGoogle Scholar
  12. Bischoff R (1994). The satellite cell and muscle regeneration. In: Engel AG, Franzini-Armstrong C (eds) Myology, vol. 1. McGraw-Hill, Inc., New YorkGoogle Scholar
  13. Blaveri K, Heslop L, Yu DS, Rosenblatt JD, Gross JG, Partridge TA, Morgan JE (1999) Patterns of repair of dystrophic mouse muscle: studies on isolated fibers. Dev Dyn 216:244–256PubMedCrossRefGoogle Scholar
  14. Bonner PH, Hauschka SD (1974) Clonal analysis of vertebrate myogenesis. I. Early developmental events in the chick limb. Dev Biol 37:317–328PubMedCrossRefGoogle Scholar
  15. Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255:197–200PubMedCrossRefGoogle Scholar
  16. Carlson BM (1973) The regeneration of skeletal muscle. A review. Am J Anat 137:119–149PubMedCrossRefGoogle Scholar
  17. Carlson BM (1968) Regeneration research in the Soviet Union. Anat Rec 160:665–674PubMedCrossRefGoogle Scholar
  18. Chen Y, Lin G, Slack JM (2006) Control of muscle regeneration in the Xenopus tadpole tail by Pax7. Development 133:2303–2313PubMedCrossRefGoogle Scholar
  19. Church JCT, Noronha RFX, Allbrook DB (1966) Satellite cells and skeletal muscle regeneration. Br J Surg 53:638–642CrossRefGoogle Scholar
  20. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301PubMedCrossRefGoogle Scholar
  21. Collins CA, Zammit PS, Ruiz AP, Morgan JE, Partridge TA (2007) A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 25:885–894PubMedCrossRefGoogle Scholar
  22. Conboy IM, Rando TA (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3:397–409PubMedCrossRefGoogle Scholar
  23. Cooper WG, Konigsberg IR (1961) Dynamics of myogenesis in vitro. Anat Rec 140:195–205PubMedCrossRefGoogle Scholar
  24. Cornelison DD, Filla MS, Stanley HM, Rapraeger AC, Olwin BB (2001) Syndecan-3 and syndecan-4 specifically mark skeletal muscle satellite cells and are implicated in satellite cell maintenance and muscle regeneration. Dev Biol 239:79–94PubMedCrossRefGoogle Scholar
  25. Cornelison DD, Wilcox-Adelman SA, Goetinck PF, Rauvala H, Rapraeger AC, Olwin BB (2004) Essential and separable roles for Syndecan-3 and Syndecan-4 in skeletal muscle development and regeneration. Genes Dev 18:2231–2236PubMedCrossRefGoogle Scholar
  26. Cossu G, Molinaro M, Pacifici M (1983) Differential response of satellite cells and embryonic myoblasts to a tumor promoter. Dev Biol 98:520–524PubMedCrossRefGoogle Scholar
  27. Cousins JC, Woodward KJ, Gross JG, Partridge TA, Morgan JE (2004) Regeneration of skeletal muscle from transplanted immortalised myoblasts is oligoclonal. J Cell Sci 117:3259–3269PubMedCrossRefGoogle Scholar
  28. Day K, Shefer G, Richardson JB, Enikolopov G, Yablonka-Reuveni, Z (2007) Nestin-GFP reporter expression defines the quiescent state of skeletal muscle satellite cells. Dev Biol 304:246–259PubMedCrossRefGoogle Scholar
  29. De Angelis L, Berghella L, Coletta M, Lattanzi L, Zanchi M, Cusella-De Angelis MG, Ponzetto C, Cossu G (1999) Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147:869–878PubMedCrossRefGoogle Scholar
  30. Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15:666–673PubMedCrossRefGoogle Scholar
  31. Dreyer HC, Blanco CE, Sattler FR, Schroeder ET, Wiswell RA (2006) Satellite cell numbers in young and older men 24 hours after eccentric exercise. Muscle Nerve 33:242–253PubMedCrossRefGoogle Scholar
  32. Dreyfus PA, Chretien F, Chazaud B, Kirova Y, Caramelle P, Garcia L, Butler-Browne G, Gherardi RK (2004) Adult bone marrow-derived stem cells in muscle connective tissue and satellite cell niches. Am J Pathol 164:773–779PubMedGoogle Scholar
  33. Feldman JL, Stockdale FE (1992) Temporal appearance of satellite cells during myogenesis. Dev Biol 153:217–226PubMedCrossRefGoogle Scholar
  34. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530PubMedCrossRefGoogle Scholar
  35. Fuchtbauer EM, Westphal H (1992) MyoD and myogenin are coexpressed in regenerating skeletal muscle of the mouse. Dev Dyn 193:34–39PubMedGoogle Scholar
  36. Fukada S, Higuchi S, Segawa M, Koda K, Yamamoto Y, Tsujikawa K, Kohama Y, Uezumi A, Imamura M, Miyagoe-Suzuki Y, Takeda S, Yamamoto H (2004) Purification and cell-surface marker characterization of quiescent satellite cells from murine skeletal muscle by a novel monoclonal antibody. Exp Cell Res 296:245–255PubMedCrossRefGoogle Scholar
  37. Garry DJ, Meeson A, Elterman J, Zhao Y, Yang P, Bassel-Duby R, Williams RS (2000) Myogenic stem cell function is impaired in mice lacking the forkhead/winged helix protein MNF. Proc Natl Acad Sci U S A 97:5416–5421PubMedCrossRefGoogle Scholar
  38. Garry DJ, Yang Q, Bassel-Duby R, Williams RS (1997) Persistent expression of MNF identifies myogenic stem cells in postnatal muscles. Dev Biol 188:280–294PubMedCrossRefGoogle Scholar
  39. Gross JG, Bou-Gharios G, Morgan JE (1999) Potentiation of myoblast transplantation by host muscle irradiation is dependent on the rate of radiation delivery. Cell Tissue Res 298:371–375PubMedCrossRefGoogle Scholar
  40. Gross JG, Morgan JE (1999) Muscle precursor cells injected into irradiated mdx mouse muscle persist after serial injury. Muscle Nerve 22:174–185PubMedCrossRefGoogle Scholar
  41. Grounds MD, Garrett KL, Lai MC, Wright WE, Beilharz MW (1992) Identification of skeletal muscle precursor cells in vivo by use of MyoD1 and myogenin probes. Cell Tissue Res 267:99–104PubMedCrossRefGoogle Scholar
  42. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394PubMedGoogle Scholar
  43. Halevy O, Piestun Y, Allouh MZ, Rosser BW, Rinkevich Y, Reshef R, Rozenboim I, Wleklinski-Lee M, Yablonka-Reuveni Z (2004) Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Dev Dyn 231:489–502PubMedCrossRefGoogle Scholar
  44. Hartley RS, Bandman E, Yablonka-Reuveni Z (1992) Skeletal muscle satellite cells appear during late chicken embryogenesis. Dev Biol 153:206–216PubMedCrossRefGoogle Scholar
  45. Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551PubMedGoogle Scholar
  46. Hay ED (1959) Electron microscopic observations of muscle dedifferentiation in regenerating ambystoma limbs. Dev Biol 1:555–585CrossRefGoogle Scholar
  47. Heslop L, Beauchamp JR, Tajbakhsh S, Buckingham ME, Partridge TA, Zammit PS (2001) Transplanted primary neonatal myoblasts can give rise to functional satellite cells as identified using the Myf5nlacZl+ mouse. Gene Ther 8:778–783PubMedCrossRefGoogle Scholar
  48. Heslop L, Morgan JE, Partridge TA (2000) Evidence for a myogenic stem cell that is exhausted in dystrophic muscle. J Cell Sci 113(Pt 12):2299–2308PubMedGoogle Scholar
  49. Horst D, Ustanina S, Sergi C, Mikuz G, Juergens H, Braun T, Vorobyov E (2006) Comparative expression analysis of Pax3 and Pax7 during mouse myogenesis. Int J Dev Biol 50:47–54PubMedCrossRefGoogle Scholar
  50. Illa I, Leon-Monzon M, Dalakas MC (1992) Regenerating and denervated human muscle fibers and satellite cells express neural cell adhesion molecule recognized by monoclonal antibodies to natural killer cells. Ann Neurol 31:46–52PubMedCrossRefGoogle Scholar
  51. Irintchev A, Zeschnigk M, Starzinski-Powitz A, Wernig A (1994) Expression pattern of M-cadherin in normal, denervated, and regenerating mouse muscles. Dev Dyn 199:326–337PubMedGoogle Scholar
  52. Jones NC, Tyner KJ, Nibarger L, Stanley HM, Cornelison DD, Fedorov YV, Olwin BB (2005) The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell. J Cell Biol 169:105–116PubMedCrossRefGoogle Scholar
  53. Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V, Tajbakhsh S (2004) Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431:466–471PubMedCrossRefGoogle Scholar
  54. Kastner S, Elias MC, Rivera AJ, Yablonka-Reuveni Z (2000) Gene expression patterns of the fibroblast growth factors and their receptors during myogenesis of rat satellite cells. J Histochem Cytochem 48:1079–1096PubMedGoogle Scholar
  55. Katz B (1961) The terminations of the afferent nerve fibre in the muscle spindle of the frog. Philos Trans Royal Soc Lond [Biol] 243:221–240CrossRefGoogle Scholar
  56. Kelly R, Alonso S, Tajbakhsh S, Cossu G, Buckingham M (1995) Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice. J Cell Biol 129:383–396PubMedCrossRefGoogle Scholar
  57. Kitzmann M, Carnac G, Vandromme M, Primig M, Lamb NJ, Fernandez A (1998) The muscle regulatory factors MyoD and myf-5 undergo distinct cell cycle-specific expression in muscle cells. J Cell Biol 142:1447–1459PubMedCrossRefGoogle Scholar
  58. Konigsberg UR, Lipton BH, Konigsberg IR (1975) The regenerative response of single mature muscle fibers isolated in vitro. Dev Biol 45:260–275PubMedCrossRefGoogle Scholar
  59. Knapp JR, Davie JK, Myer A, Meadows E, Olson EN, Klein WH (2006) Loss of myogenin in postnatal life leads to normal skeletal muscle but reduced body size. Development 133:601–610PubMedCrossRefGoogle Scholar
  60. Kuang S, Charge SB, Seale P, Huh M, Rudnicki MA (2006) Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 172:103–113PubMedCrossRefGoogle Scholar
  61. LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601PubMedCrossRefGoogle Scholar
  62. Lamey TM, Koenders A, Ziman M (2004) Pax genes in myogenesis: alternate transcripts add complexity. Histol Histopathol 19:1289–1300PubMedGoogle Scholar
  63. Lapidos KA, Chen YE, Earley JU, Heydemann A, Huber JM, Chien M, Ma A, McNally EM (2004) Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle. J Clin Invest 114:1577–1585PubMedCrossRefGoogle Scholar
  64. Lash JW, Holtzer H, Swift H (1957) Regeneration of mature skeletal muscle. Anat Rec 128:679–697PubMedCrossRefGoogle Scholar
  65. Le Gros Clark WE (1946) An experimental study of the regeneration of mammalian striped muscle. J Anat 80:24–36Google Scholar
  66. Lee HJ, Goring W, Ochs M, Muhlfeld C, Steding G, Paprotta I, Engel W, Adham IM (2004) Sox15 is required for skeletal muscle regeneration. Mol Cell Biol 24:8428–8436PubMedCrossRefGoogle Scholar
  67. Lewis WH, Lewis MR (1917) Behaviour of cross striated muscle in tissue cultures. Am J Anat 22: 169–194CrossRefGoogle Scholar
  68. Lipton BH, Schultz E (1979) Developmental fate of skeletal muscle satellite cells. Science 205: 1292–1294PubMedCrossRefGoogle Scholar
  69. Luz MA, Marques MJ, Santo Neto H (2002) Impaired regeneration of dystrophin-deficient muscle fibers is caused by exhaustion of myogenic cells. Braz J Med Biol Res 35:691–695PubMedCrossRefGoogle Scholar
  70. Macconnachie HF, Enesco M, Leblond CP (1964) The mode of increase in the number of skeletal muscle nuclei in the postnatal rat. Am J Anat 114:245–253PubMedCrossRefGoogle Scholar
  71. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495PubMedCrossRefGoogle Scholar
  72. Mazanet R, Franzini-Armstrong C (1986) The Satellite Cell. In: Engel RG, Banker BQ (eds) Myology. McGraw-Hill, New York, pp. 285–307Google Scholar
  73. McGeachie JK, Grounds MD (1987) Initiation and duration of muscle precursor replication after mild and severe injury to skeletal muscle of mice. An autoradiographic study. Cell Tissue Res 248:125–130PubMedCrossRefGoogle Scholar
  74. Megeney LA, Kablar B, Garrett K, Anderson JE, Rudnicki MA (1996) MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev 10:1173–1183PubMedCrossRefGoogle Scholar
  75. Milasincic DJ, Dhawan J, Farmer SR (1996) Anchorage-dependent control of muscle-specific gene expression in C2C12 mouse myoblasts. In Vitro Cell Dev Biol Anim 32:90–99PubMedCrossRefGoogle Scholar
  76. Molnar G, Ho ML, Schroedl NA (1996) Evidence for multiple satellite cell populations and a non-myogenic cell type that is regulated differently in regenerating and growing skeletal muscle. Tissue Cell 28:547–556PubMedCrossRefGoogle Scholar
  77. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309:2064–2067PubMedCrossRefGoogle Scholar
  78. Morgan JE, Beauchamp JR, Pagel CN, Peckham M, Ataliotis P, Jat PS, Noble MD, Farmer K, Partridge TA (1994) Myogenic cell lines derived from transgenic mice carrying a thermolabile T antigen: a model system for the derivation of tissue-specific and mutation-specific cell lines. Dev Biol 162: 486–498PubMedCrossRefGoogle Scholar
  79. Morrison JI, Loof S, He P, Simon A (2006) Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. J Cell Biol 172:433–440PubMedCrossRefGoogle Scholar
  80. Moss FP, Leblond CP (1971) Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec 170:421–435PubMedCrossRefGoogle Scholar
  81. Moss FP, Leblond CP (1970) Nature of dividing nuclei in skeletal muscle of growing rats. J Cell Biol 44:459–462PubMedCrossRefGoogle Scholar
  82. Muir AR, Kanji AH, Allbrook D (1965) The structure of the satellite cells in skeletal muscle. J Anat 99:435–444PubMedGoogle Scholar
  83. Nagata Y, Kobayashi H, Umeda M, Ohta N, Kawashima S, Zammit PS, Matsuda R (2006a) Sphingomyelin levels in the plasma membrane correlate with the activation state of muscle satellite cells. J Histochem Cytochem 54:375–384CrossRefGoogle Scholar
  84. Nagata Y, Partridge TA, Matsuda R, Zammit PS (2006b) Entry of muscle satellite cells into the cell cycle requires sphingolipid signaling. J Cell Biol 174:245–253CrossRefGoogle Scholar
  85. Olguin HC, Olwin BB (2004) Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol 275:375–388PubMedCrossRefGoogle Scholar
  86. Olivera A, Kohama T, Edsall L, Nava V, Cuvillier O, Poulton S, Spiegel S (1999) Sphingosine kinase expression increases intracellular sphingosine-1-phosphate and promotes cell growth and survival. J Cell Biol 147:545–558PubMedCrossRefGoogle Scholar
  87. Olivera A, Spiegel S (1993) Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 365:557–560PubMedCrossRefGoogle Scholar
  88. Ontell M, Kozeka K (1984) The organogenesis of murine striated muscle: a cytoarchitectural study. Am J Anat 171:133–148PubMedCrossRefGoogle Scholar
  89. Oustanina S, Hause G, Braun T (2004) Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. Embo J 23:3430–3439PubMedCrossRefGoogle Scholar
  90. Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 337:176–179PubMedCrossRefGoogle Scholar
  91. Polesskaya A, Seale P, Rudnicki MA (2003) Wnt signaling induces the myogenic specification of resident CD45+ adult stem cells during muscle regeneration. Cell 113:841–852PubMedCrossRefGoogle Scholar
  92. Price HM, Howes EL, Jr., Blumberg JM (1964) Ultrastructural alterations in skeletal muscle fibers injured by cold. Ii. Cells on the sarcolemmal tube: Observations on “Discontinuous” regeneration and myofibril formation. Lab Invest 13:1279–1302PubMedGoogle Scholar
  93. Quinn LS, Holtzer H, Nameroff M (1985) Generation of chick skeletal muscle cells in groups of 16 from stem cells. Nature 313:692–694PubMedCrossRefGoogle Scholar
  94. Quinn LS, Nameroff M, Holtzer H (1984) Age-dependent changes in myogenic precursor cell compartment sizes. Evidence for the existence of a stem cell. Exp Cell Res 154:65–82PubMedCrossRefGoogle Scholar
  95. Rantanen J, Hurme T, Lukka R, Heino J, Kalimo H (1995) Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different populations of satellite cells. Lab Invest 72:341–347PubMedGoogle Scholar
  96. Reimann J, Brimah K, Schroder R, Wernig A, Beauchamp JR, Partridge TA (2004) Pax7 distribution in human skeletal muscle biopsies and myogenic tissue cultures. Cell Tissue Res 315:233–242PubMedCrossRefGoogle Scholar
  97. Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M (2006) Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172:91–102PubMedCrossRefGoogle Scholar
  98. Sabourin LA, Girgis-Gabardo A, Seale P, Asakura A, Rudnicki MA (1999) Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. J Cell Biol 144: 631–643PubMedCrossRefGoogle Scholar
  99. Sachidanandan C, Sambasivan R, Dhawan J (2002) Tristetraprolin and LPS-inducible CXC chemokine are rapidly induced in presumptive satellite cells in response to skeletal muscle injury. J Cell Sci 115:2701–2712PubMedGoogle Scholar
  100. Sadeh M, Czyewski K, Stern LZ (1985) Chronic myopathy induced by repeated bupivacaine injections. J Neurol Sci 67:229–238PubMedCrossRefGoogle Scholar
  101. Schmidt K, Glaser G, Wernig A, Wegner M, Rosorius O (2003) Sox8 is a specific marker for muscle satellite cells and inhibits myogenesis. J Biol Chem 278:29769–29775PubMedCrossRefGoogle Scholar
  102. Schultz E (1996) Satellite cell proliferative compartments in growing skeletal muscles. Dev Biol 175:84–94PubMedCrossRefGoogle Scholar
  103. Schultz E (1976) Fine structure of satellite cells in growing skeletal muscle. Am J Anat 147:49–70PubMedCrossRefGoogle Scholar
  104. Schultz E, Chamberlain C, McCormick KM, Mozdziak PE (2006) Satellite cells express distinct patterns of myogenic proteins in immature skeletal muscle. Dev Dyn 235:3230–3239PubMedCrossRefGoogle Scholar
  105. Schultz E, Gibson MC, Champion T (1978) Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool 206:451–456PubMedCrossRefGoogle Scholar
  106. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786PubMedCrossRefGoogle Scholar
  107. Shafiq SA, Gorycki MA (1965) Regeneration in skeletal muscle of mouse: some electron-microscope observations. J Pathol Bacteriol 90:123–127PubMedCrossRefGoogle Scholar
  108. Shafiq SA, Gorycki MA, Mauro A (1968) Mitosis during postnatal growth in skeletal and cardiac muscle of the rat. J Anat 103:135–141PubMedGoogle Scholar
  109. Shefer G, Oron U, Irintchev A, Wernig A, Halevy O (2001) Skeletal muscle cell activation by low-energy laser irradiation: a role for the MAPK/ERK pathway. J Cell Physiol 187:73–80PubMedCrossRefGoogle Scholar
  110. Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z (2006) Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol 294:50–66PubMedCrossRefGoogle Scholar
  111. Sherwood RI, Christensen JL, Conboy IM, Conboy MJ, Rando TA, Weissman IL, Wagers AJ (2004) Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119:543–554PubMedCrossRefGoogle Scholar
  112. Shinin V, Gayraud-Morel B, Gomes D, Tajbakhsh S (2006) Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol 8:677–687PubMedCrossRefGoogle Scholar
  113. Shu X, Wu W, Mosteller RD, Broek D (2002) Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol 22:7758–7768PubMedCrossRefGoogle Scholar
  114. Snow MH (1978) An autoradiographic study of satellite cell differentiation into regenerating myotubes following transplantation of muscles in young rats. Cell Tissue Res 186:535–540PubMedCrossRefGoogle Scholar
  115. Snow MH (1977) Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. I. A fine structural study. Anat Rec 188:181–200PubMedCrossRefGoogle Scholar
  116. Snow MH (1977a) Myogenic cell formation in regenerating rat skeletal muscle injured by mincing. II. An autoradiographic study. Anat Rec 188:201–217CrossRefGoogle Scholar
  117. Speidel CC (1938) Studies in living muscles 1. Growth, injury and repair of striated muscle, as revealed by prolonged observations of individual fibers in living frog tadpoles. Am J Anat 62:179–235CrossRefGoogle Scholar
  118. Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4:397–407PubMedCrossRefGoogle Scholar
  119. Stockdale FE, Holtzer H (1961) DNA synthesis and myogenesis. Exp Cell Res 24:508–520PubMedCrossRefGoogle Scholar
  120. Stockdale FE, Nikovits W, Jr., Christ B (2000) Molecular and cellular biology of avian somite development. Dev Dyn 219:304–321PubMedCrossRefGoogle Scholar
  121. Studitsky AN (1964) Free Auto- and Homografts of Muscle Tissue in Experiments on Animals. Ann N Y Acad Sci 120:789–801PubMedCrossRefGoogle Scholar
  122. Tamaki T, Akatsuka A, Ando K, Nakamura Y, Matsuzawa H, Hotta T, Roy RR, Edgerton VR (2002) Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol 157:571–577PubMedCrossRefGoogle Scholar
  123. Tatsumi R, Allen RE (2004) Active hepatocyte growth factor is present in skeletal muscle extracellular matrix. Muscle Nerve 30:654–658PubMedCrossRefGoogle Scholar
  124. Tatsumi R, Anderson JE, Nevoret CJ, Halevy O, Allen RE (1998) HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev Biol 194:114–128PubMedCrossRefGoogle Scholar
  125. Venable JH (1966) Morphology of the cells of normal, testosterone deprived and testosterone-stimulated levator ani muscles. Am J Anat 119:271–302PubMedCrossRefGoogle Scholar
  126. Volonte D, Liu Y, Galbiati F (2005) The modulation of caveolin-1 expression controls satellite cell activation during muscle repair. Faseb J 19:237–239PubMedGoogle Scholar
  127. Wakeford S, Watt DJ, Partridge TA (1991) X-irradiation improves mdx mouse muscle as a model of myofiber loss in DMD. Muscle Nerve 14:42–50PubMedCrossRefGoogle Scholar
  128. Watt DJ, Lambert K, Morgan JE, Partridge TA, Sloper JC (1982) Incorporation of donor muscle precursor cells into an area of muscle regeneration in the host mouse. J Neurol Sci 57:319–331PubMedCrossRefGoogle Scholar
  129. Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S, et al. (1991) The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761–766PubMedCrossRefGoogle Scholar
  130. Wernig G, Janzen V, Schafer R, Zweyer M, Knauf U, Hoegemeier O, Mundegar RR, Garbe S, Stier S, Franz T, Wernig M, Wernig A (2005) The vast majority of bone-marrow-derived cells integrated into mdx muscle fibers are silent despite long-term engraftment. Proc Natl Acad Sci U S A 102: 11852–11857PubMedCrossRefGoogle Scholar
  131. Whalen RG, Harris JB, Butler-Browne GS, Sesodia S (1990) Expression of myosin isoforms during notexin-induced regeneration of rat soleus muscles. Dev Biol 141:24–40PubMedCrossRefGoogle Scholar
  132. Yablonka-Reuveni Z, Rivera AJ (1994) Temporal expression of regulatory and structural muscle proteins during myogenesis of satellite cells on isolated adult rat fibers. Dev Biol 164:588–603PubMedCrossRefGoogle Scholar
  133. Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P (1999a) The transition from proliferation to differentiation is delayed in satellite cells from mice lacking MyoD. Dev Biol 210:440–455CrossRefGoogle Scholar
  134. Yablonka-Reuveni Z, Seger R, Rivera AJ (1999b) Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. J Histochem Cytochem 47:23–42Google Scholar
  135. Yao SN, Kurachi K (1993) Implanted myoblasts not only fuse with myofibers but also survive as muscle precursor cells. J Cell Sci 105 (Pt 4):957–963PubMedGoogle Scholar
  136. Yoshida N, Yoshida S, Koishi K, Masuda K, Nabeshima Y (1998) Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates “reserve cells”. J Cell Sci 111 (Pt 6):769–779PubMedGoogle Scholar
  137. Yusuf I, Fruman DA (2003) Regulation of quiescence in lymphocytes. Trends Immunol 24:380–386PubMedCrossRefGoogle Scholar
  138. Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166:347–357Google Scholar
  139. Zammit PS, Heslop L, Hudon V, Rosenblatt JD, Tajbakhsh S, Buckingham ME, Beauchamp JR, Partridge TA (2002) Kinetics of myoblast proliferation show that resident satellite cells are competent to fully regenerate skeletal muscle fibers. Exp Cell Res 281:39–49PubMedCrossRefGoogle Scholar
  140. Zammit PS, Partridge TA, Yablonka-Reuveni Z (2006a) The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54:1177–1191CrossRefGoogle Scholar
  141. Zammit PS, Relaix F, Nagata Y, Ruiz AP, Collins CA, Partridge TA, Beauchamp JR (2006b) Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci 119:1824–1832CrossRefGoogle Scholar
  142. Zhang H, Desai NN, Olivera A, Seki T, Brooker G, Spiegel S (1991) Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol 114:155–167PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Peter S. Zammit
    • 1
  1. 1.Randall Division of Cell and Molecular BiophysicsKing’s College LondonLondonUK

Personalised recommendations