Non Muscle Stem Cells and Muscle Regeneration

  • Graziella Messina
  • Stefano Biressi
  • Giulio Cossu
Part of the Advances in Muscle Research book series (ADMR, volume 3)


Skeletal muscle of the vertebrate embryo originates from paraxial mesoderm (somites, somitomers and prechordal cephalic mesoderm) (Christ and Ordahl 1995) and is formed in discrete steps by different classes of myogenic progenitor cells (Cossu and Biressi 2005). After myotome formation, embryonic myoblasts give rise to primary fibers in the embryo, while fetal myoblasts give rise to secondary fibers, initially smaller and surrounding primary fibers. Satellite cells appear underneath the newly formed basal lamina that develops around each muscle fiber, and contribute to their post-natal growth and regeneration(Bischoff, 1994


Skeletal myogenesis muscle satellite cells skeletal myoblasts mesoangioblasts muscle regeneration. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asakura A, Seale P, Girgis-Gabardo A, Rudnicki MA, (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol (2002) 159:123–134CrossRefGoogle Scholar
  2. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967PubMedCrossRefGoogle Scholar
  3. Bachrach E, Perez AL, Choi YH, Illigens BM, Jun SJ, del Nido P, McGowan FX, Li S, Flint A, Chamberlain J, Kunkel LM (2006) Muscle engraftment of myogenic progenitor cells following intraarterial transplantation. Muscle Nerve 34(1):44–52PubMedCrossRefGoogle Scholar
  4. Bachrach E, Li S, Perez AL, Schienda J, Liadaki K, Volinski J, Flint A, Chamberlain J, Kunkel LM (2004) Systemic delivery of human microdystrophin to regenerating mouse dystrophic muscle by muscle progenitor cells. Proc Natl Acad Sci U S A 101(10):3581–3586PubMedCrossRefGoogle Scholar
  5. Bianco P, Cossu G (1999) Uno, nessuno e centomila: searching for the identity of mesodermal progenitors. Exp Cell Res 251(2):257–263PubMedCrossRefGoogle Scholar
  6. Bianco P, Gehron Robey P (2000) Marrow stromal stem cells. J Clin Invest 105:1663–1668PubMedGoogle Scholar
  7. Bischoff R (1994) The satellite cell and muscle regeneration, In: Engel AG, Franzini-Armstrong C (eds) Myology 2nd ed., McGraw-Hill: New York pp. 97–133Google Scholar
  8. Bonnerot C, Nicolas JF (1993) Application of LacZ gene fusions to postimplantation development. Methods Enzymol 225:451–469.PubMedCrossRefGoogle Scholar
  9. Breton M, Li Z, Paulin D, Harris JA, Rieger F, Pincon-Raymond M. Garcia L (1995). Myotube driven myogenic recruitment of cells during in vitro myogenesis. Develop Dynam 202:126–136Google Scholar
  10. Camargo FD, Green R, Capetanaki Y, Jackson KA, Goodell MA (2003) Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med 9:1520–1527PubMedCrossRefGoogle Scholar
  11. Challen GA, Little MH (2006) A side order of stem cells: the SP phenotype. Stem Cells 24(1):3–12PubMedCrossRefGoogle Scholar
  12. Beam KG (1989) Restoration of normal function in genetically defective myotubes by spontaneous fusion with fibroblasts. Nature 341:445–447PubMedCrossRefGoogle Scholar
  13. Christ B, Ordahl C (1995) Early stage of chick somite development. Anat Embryol 191:381–396PubMedCrossRefGoogle Scholar
  14. Corbel SY, Lee A, Yi L, Duenas J, Brazelton TR, Blau HM et al (2003) Contribution of hematopoietic stem cells to skeletal muscle. Nat Med 9:1528–1532PubMedCrossRefGoogle Scholar
  15. Courbin P, Koenig J, Ressouches A, Beam KG Powell JA (1989) Rescue of excitation-contraction coupling in disgenic muscle by addition of fibroblasts in vitro. Neuron 2:1341–1350PubMedCrossRefGoogle Scholar
  16. Cossu G, Kelly R, Di Donna S, Vivarelli E Buckingham M (1995) Myoblast differentiation during mammalian somitogenesis is dependent upon a community effect. Proc Natl Acad Sci USA 92:2254–2258PubMedCrossRefGoogle Scholar
  17. Cossu G (1997) Unorthodox myogenesis: possible developmental significance and implications for tissue histogenesis and regeneration. Histol Histopathol 12(3):755–760PubMedGoogle Scholar
  18. Cossu G, Sampaolesi M. (2004) New therapies for muscular dystrophy: cautious optimism. Trends Mol Med 10:516–520PubMedCrossRefGoogle Scholar
  19. Cossu G, Biressi S. (2005) Satellite cells, myoblasts and other occasional myogenic progenitors: possible origin, phenotypic traits and role in muscle regeneration. Sem Cell Dev Biol Aug-Oct; 16(4–5):623–631.CrossRefGoogle Scholar
  20. Cusella De Angelis MG, Balconi G, Bernasconi S, Zanetta L, Boratto R, Galli D, Dejana E, Cossu G (2003) Skeletal myogenic progenitors in the endothelium of lung and yolk sac. Exptl Cell Res 290:207–216PubMedCrossRefGoogle Scholar
  21. De Angelis L, Berghella L, Coletta M, Lattanzi L, Zanchi M, Cusella-De Angelis MG et al (1999) Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147:869–878PubMedCrossRefGoogle Scholar
  22. De Bari C, Dell’Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten FP (2003) Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 160(6):909–918PubMedCrossRefGoogle Scholar
  23. Dezawa M, Ishikawa H, Itokazu Y, Yoshihara T, Hoshino M, Takeda S, Ide C, Nabeshima Y (2005) Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science 309(5732):314–317PubMedCrossRefGoogle Scholar
  24. Ferrari G, Cusella-De Angelis MG, Coletta M, Paolucci E, Stornaiuolo A, Cossu G et al (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530PubMedCrossRefGoogle Scholar
  25. Ferrari G, Stornaiuolo A, Mavilio F (2001) Failure to correct murine muscular dystrophy. Nature 411(6841):1014–1015PubMedCrossRefGoogle Scholar
  26. Galli R, Borello U, Gritti A, Minasi MG, Bjornson C, Coletta M et al (2000) Skeletal Myogenic Potential of Adult Neural Stem Cells. Nature Neurosci 3:986–991PubMedCrossRefGoogle Scholar
  27. Gibson AJ, Karasinski J, Relvas J, Moss J, Sherratt TG, Strong PN Watt DJ. (1995) Dermal fibroblasts convert to a myogenic lineage in mdx mouse muscle. J Cell Science 108:207–214PubMedGoogle Scholar
  28. Goldring K, Jones GE, Thiagarajah R, Watt DJ (2002) The effect of galectin-1 on the differentiation of fibroblasts and myoblasts in vitro. J Cell Sci 115:355–366PubMedGoogle Scholar
  29. Goodell MA, McKinney-Freeman S, Camargo FD (2005) Isolation and characterization of side population cells. Methods Mol Biol 290:343–352PubMedGoogle Scholar
  30. Gros J, Manceau M, Thome V, Marcelle C. (2005) A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435(7044):954–958PubMedCrossRefGoogle Scholar
  31. Grounds MD, Garrett KL, Beilharz MW (1992) The transcription of MyoD1 and myogenin genes in thymic cells in vivo. Exp Cell Res 198(2):357–361PubMedCrossRefGoogle Scholar
  32. Gurdon JB. (1993) Community effect and related phenomena in development. Cell 75:501–506CrossRefGoogle Scholar
  33. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401(6751):390–394PubMedGoogle Scholar
  34. Gussoni E, Bennett RR, Muskiewicz KR, Meyerrose T, Nolta JA, Gilgoff I, Stein J, Chan YM, Lidov HG, Bonnemann CG, Von Moers A, Morris GE, Den Dunnen JT, Chamberlain JS, Kunkel LM, Weinberg K (2002) Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. J Clin Invest 110(6):807–814PubMedCrossRefGoogle Scholar
  35. Jiang Y (2002a) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30(8):896–904. Erratum in: Exp Hematol 2006 Jun; 34(6):809Google Scholar
  36. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM (2002b) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49CrossRefGoogle Scholar
  37. Kelly R, Alonso S, Tajbakhsh S, Cossu G, Buckingham M (1995) Myosin light chain 3F regulatory sequences confer regionalized cardiac and skeletal muscle expression in transgenic mice. J Cell Biol 129(2):383–396PubMedCrossRefGoogle Scholar
  38. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7(4):430–436PubMedCrossRefGoogle Scholar
  39. Liechty KW, MacKenzie TC, Shaaban AF, Radu A, Moseley AM, Deans R, Marshak DR, Flake AW (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6(11):1282–1286PubMedCrossRefGoogle Scholar
  40. Mayer DC, Leinwand LA (1997) Sarcomeric gene expression and contractility in myofibroblasts. J Cell Biol 139(6):1477–1484.PubMedCrossRefGoogle Scholar
  41. McKinney-Freeman SL, Jackson KA, Camargo FD, Ferrari G, Mavilio F, Goodell MA (2002) Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proc Natl Acad Sci U S A 99(3):1341–1346PubMedCrossRefGoogle Scholar
  42. Meilhac SM, Esner M, Kelly RG, Nicolas JF, Buckingham ME (2004) The clonal origin of myocardial cells in different regions of the embryonic mouse heart. Dev Cell 6(5):685–698PubMedCrossRefGoogle Scholar
  43. Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A et al (2002) The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development 129:2773–2783PubMedGoogle Scholar
  44. Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K, Eguchi H, Onitsuka I, Matsui K, Imaizumi T (2000) Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 105(11):1527–1536PubMedGoogle Scholar
  45. Okazaki K, Holtzer H (1996) Myogenesis: fusion, myosin synthesis, and the mitotic cycle. Proc Natl Acad Sci U S A 56(5):1484–1490CrossRefGoogle Scholar
  46. Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis J Comp Neurol 425(4):479–494PubMedCrossRefGoogle Scholar
  47. Patapoutian A, Wold BJ, Wagner R (1995) Evidence for developmentally programmed transdifferentiation in mouse esophageal muscle. Science 270:1818–1821PubMedCrossRefGoogle Scholar
  48. Pesce M, Orlandi A, Iachininoto MG, Straino S, Torella AR, Rizzuti V, Pompilio G, Bonanno G, Scambia G, Capogrossi MC (2003) Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res 93(5):e51–e62PubMedCrossRefGoogle Scholar
  49. Qu Z, Balkir L, van Deutekom JC, Robbins PD, Pruchnic R, Huard J. (1998). Development of approaches to improve cell survival in myoblast transfer therapy. J Cell Biol 142:1257–1267Google Scholar
  50. Relaix F, Rocancourt D, Mansouri A, Buckingham, M (2005) A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature 435:948–953PubMedCrossRefGoogle Scholar
  51. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L. & Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625PubMedCrossRefGoogle Scholar
  52. Rodriguez AM et al (2005) Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med 201(9):1397–1405PubMedCrossRefGoogle Scholar
  53. Salvatori G, Lattanzi L, Coletta M, Aguanno S, Vivarelli E, Kelly R, Ferrari G, Harris AJ, Mavilio F, Molinaro M & Cossu G. (1995) Myogenic conversion of mammalian fibroblasts induced by differentiating muscle cells J Cell Science 108:2733–2739Google Scholar
  54. Sampaolesi M, Torrente Y, Innocenzi A, Tonlorenzi R, D’Antona G, Pellegrino MA et al (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301:487–492PubMedCrossRefGoogle Scholar
  55. Sampaolesi M, Blot S, D’Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud JL, Galvez BG, Barthelemy I, Perani L, Mantero S, Guttinger M, Pansarasa O, Rinaldi C, Cusella De Angelis MG, Torrente Y, Bordignon C, Bottinelli R. & Cossu G. (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444(7119):574–579PubMedCrossRefGoogle Scholar
  56. Sassoon DA, Garner I, Buckingham M (1988) Transcripts of alpha-cardiac and alpha-skeletal actins are early markers for myogenesis in the mouse embryo. Development 104(1):155–164PubMedGoogle Scholar
  57. Schienda J, Engleka KA, Jun S, Hansen MS, Epstein JA, Tabin CJ, Kunkel LM, Kardon G (2006) Somitic origin of limb muscle satellite and side population cells. Proc Natl Acad Sci U S A 103(4):945–950PubMedCrossRefGoogle Scholar
  58. Tajbakhsh S, Vivarelli G, Cusella-De Angelis G, Rocancourt D, Buckingham M, Cossu G (1994) A population of myogenic cells derived from the mouse neural tube. Neuron 13:813–821PubMedCrossRefGoogle Scholar
  59. Tajbakhsh S, Buckingham ME (1995) Lineage restriction of the myogenic conversion factor myf-5 in the brain. Development 121(12):4077–83PubMedGoogle Scholar
  60. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5(4):434–438PubMedCrossRefGoogle Scholar
  61. Tamaki T, Akatsuka A, Ando K, Nakamura Y, Matsuzawa H, Hotta T, Roy RR, Edgerton VR (2002) Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol 157:571–577PubMedCrossRefGoogle Scholar
  62. Tamaki T, Uchiyama Y, Okada Y, Ishikawa T, Sato M, Akatsuka M. & Asahara T. (2005) Functional recovery of damaged skeletal muscle through synchronized vasculogenesis, myogenesis, and neurogenesis by muscle-derived stem cells Circulation 112:2857–2866.Google Scholar
  63. Torrente Y, Belicchi A, Sampaolesi M, Pisati F, Lestingi M, D’Antona G, Tonlorenzi R, Porretti L, Gavina M, Mamchaoui K, Pellegrino MA, Furling D, Mouly V, Butler-Browne GS, Bottinelli R, Cossu G. & Bresolin N (2004) Human circulating AC133+ stem cells replenish the satellite cell pool, restore dystrophin expression and ameliorate function upon transplantation in murine dystrophic skeletal muscle. J Clin Invest 2004;114:182–195CrossRefGoogle Scholar
  64. Wakitani S, Seito T, Caplan AI. (1995) Myogenic cells derived from rat bone marrow mesenchimal strem cells exposed to 5-Azacytidine. Muscle & Nerve 18:1417–1426CrossRefGoogle Scholar
  65. Wekerle TH, Paterson B, Ketelsen U, Feldman M (1975) Striated muscle fibres differentiate in monolayer cultures of adult thymus reticulum. Nature. 256(5517):493–449PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Graziella Messina
    • 1
  • Stefano Biressi
    • 1
  • Giulio Cossu
    • 2
    • 3
  1. 1.Stem Cell Research Institute, Dibit, H. San Raffaelevia Olgettina 58Italy
  2. 2.Institute of Cell Biology and Tissue EngineeringSan Raffaele Biomedical Science Park of Rome II°via Castel Romano 100/2Italy
  3. 3.Department of BiologyUniversity of MilanVia Celoria 28Italy

Personalised recommendations