Transcriptional Cascades in Muscle Regeneration

  • Po Zhao
  • Eric Hoffman
Part of the Advances in Muscle Research book series (ADMR, volume 3)


Muscular Dystrophy Satellite Cell Muscle Regeneration Myogenic Differentiation Myogenic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bakay M, Melcon G, Wang Z, Schiltz L, Xuan J, Zhao P, Sartorelli V, Seo J, Pegoraro E, Angelini C, Shneiderman B, Escolar D, Chen YW, Winokur ST, Fan C, Mandler R, Nevo Y, Gordon E, Zhu Y, Dong Y, Wang Y, Hoffman EP (2006) Large-scale microarray analysis of human monogenic defects: Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb-MyoD pathways in muscle regeneration. Brain 129:996–1013PubMedCrossRefGoogle Scholar
  2. Bergstrom DA, Penn BH, Strand A, Perry RL, Rudnicki MA, Tapscott SJ (2002) Promoter-specific regulation of MyoD binding and signal transduction cooperate to pattern gene expression. Mol Cell 9:587–600PubMedCrossRefGoogle Scholar
  3. Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas EJ 3rd, Gingeras TR, Schreiber SL, Lander ES (2005) Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120:169–181PubMedCrossRefGoogle Scholar
  4. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326PubMedCrossRefGoogle Scholar
  5. Blais A, Tsikitis M, Acosta-Alvear D, Sharan R, Kluger Y, Dynlacht BD (2005) An initial blueprint for myogenic differentiation. Genes Dev 19:553–569PubMedCrossRefGoogle Scholar
  6. Bonne G, Di Barletta MR, Varnous S, Becane HM, Hammouda EH, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizberea JA, Duboc D, Fardeau M, Toniolo D, Schwartz K (1999) Mutations in the gene encoding LMNA cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21:285–288PubMedCrossRefGoogle Scholar
  7. Braun T, Buschhausen-Denker G, Bober E, Tannich E, Arnold HH (1989) A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J 8:701–709PubMedGoogle Scholar
  8. Braun T, Rudnicki MA, Arnold HH, Jaenisch R (1992) Targeted inactivation of the muscle regulator gene Myf-5 results in abnormal rib development and perinatal death. Cell 71:369–382PubMedCrossRefGoogle Scholar
  9. Brodsky GL, Muntoni F, Miocic S, Sinagra G, Sewry C, Mestroni L (2000) LMNA gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation 101:473–476PubMedGoogle Scholar
  10. Cao Y, Kumar RM, Penn BH, Berkes CA, Kooperberg C, Boyer LA, Young RA, Tapscott SJ (2006) Global and gene-specific analyses show distinct roles for Myod and Myog at a common set of promoters. EMBO J 25:502–511PubMedCrossRefGoogle Scholar
  11. Carroll JS, Liu XS, Brodsky AS, Li W, Meyer CA, Szary AJ, Eeckhoute J, Shao W, Hestermann EV, Geistlinger TR, Fox EA, Silver PA, Brown M (2005) Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122:33–43PubMedCrossRefGoogle Scholar
  12. Chen J, Zhao P, Massaro D, Clerch LB, Almon RR, DuBois DC, Jusko WJ, Hoffman EP (2004) The PEPR GeneChip data warehouse and implementation of a dynamic time series query tool (SGQT) with graphical interface. Nucleic Acids Res 32:D578–D581CrossRefGoogle Scholar
  13. Chen Y-W, Zhao P, Boroup R, Hoffman EP (2000) Expression profiling in muscular dystrophies: identification of novel aspects of molecular pathophysiology. J Cell Biol 151:1321–1336PubMedCrossRefGoogle Scholar
  14. Creuzet S, Lescaudron L, Li Z, Fontaine-Perus J (1998) MyoD, myogenin, and desmin-nls-lacZ transgene emphasize the distinct patterns of satellite cell activation in growth and regeneration. Exp Cell Res 243:241–253PubMedCrossRefGoogle Scholar
  15. d’Albis A, Couteaux R, Janmot C, Roulet A, Mira JC (1988) Regeneration after cardiotoxin injury of innervated and denervated slow and fast muscles of mammals. Eur J Biochem 174:103–110PubMedCrossRefGoogle Scholar
  16. d’Albis, Couteaux R, Janmot C, Mira JC (1989) Myosin isoform transitions in regeneration of fast and slow muscles during postnatal development of the rat. Dev Biol 135:320–325PubMedCrossRefGoogle Scholar
  17. Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51:987–1000PubMedCrossRefGoogle Scholar
  18. Delgado I, Huang X, Jones S, Zhang L, Hatcher R, Gao B, Zhang P (2003) Dynamic gene expression during the onset of myoblast differentiation in vitro. Genomics 82:109–121PubMedCrossRefGoogle Scholar
  19. Edmondson DG, Olson EN (1989) A gene with homology to the myc similarity region of MyoD1 is expressed during myogenesis and is sufficient to activate the muscle differentiation program. Genes Dev 3:628–640PubMedCrossRefGoogle Scholar
  20. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310: 1817–1821PubMedCrossRefGoogle Scholar
  21. Franke WW, Stehr S, Stumpp S, Kuhn C, Heid H, Rackwitz H-R, Schnolzer M, Baumann R, Holzhausen H-J, Moll R (1996) Specific immunohistochemical detection of cardiac/fetal α-actin in human cardiomyocytes and regenerating skeletal muscle cells. Differentiation 60:245–250Google Scholar
  22. Fuchtbauer EM, Westphal H. (1992) MyoD and myogenin are coexpressed in regenerating skeletal muscle of the mouse. Dev Dyn 193:34–39PubMedGoogle Scholar
  23. Hasty P, Bradley A, Morris JH, Edmondsnon DG, Venuti JM, Olson EN, Klein WH (1993) Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364: 501–506PubMedCrossRefGoogle Scholar
  24. Iezzi S, Di Padova M, Serra C, Caretti G, Simone C, Maklan E, Minetti G, Zhao P, Hoffman EP, Puri PL, Sartorelli V (2004) Deacetylase inhibitors increase muscle cell size by promoting myoblast recruitment and fusion through induction of follistatin. Dev Cell 6:673–684PubMedCrossRefGoogle Scholar
  25. Kablar B, Krastel K, Ying C, Asakura A, Tapscott SJ, Rudnicki MA (1997) MyoD and Myf5 differentially regulate the development of limb versus truck skeletal muscle. Development 124:4729–4738PubMedGoogle Scholar
  26. Kassar-Duchossoy L, Gayraud-Morel B, Gomes D, Rocancourt D, Buckingham M, Shinin V, Tajbakhsh S (2004) Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431:466–471PubMedCrossRefGoogle Scholar
  27. Knapp JR, Davie JK, Myer A, Meadows E, Olson EN, Klein WH (2006) Loss of myogenin in postnatal life leads to normal skeletal muscle but reduced body size. Development 133:601–610PubMedCrossRefGoogle Scholar
  28. Koishi K, Zhang M, McLennan IS, Harris AJ (1995) MyoD protein accumulates in satellite cells and is neurally regulated in regenerating myotubes and skeletal muscle fibers. Dev Dyn 202:244–254PubMedGoogle Scholar
  29. Launay T, Armand AS, Charbonnier F, Mira JC, Donsez E, Gallien CL, Chanoine C (2001) Expression and neural control of myogenic regulatory factor genes during regeneration of mouse soleus. J Histochem Cytochem 49:887–899PubMedGoogle Scholar
  30. Mejat A, Ramond F, Bassel-Duby R, Khochbin S, Olson EN, Schaeffer L (2005) Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression. Nat Neurosci 8:313–321PubMedCrossRefGoogle Scholar
  31. Melcon G, Kozlov S, Cutler DA, Sulivan T, Hernandez L, Zhao P, Mitchell S, Nader G, Bakay M, Rottman JN, Hoffman EP, Stewart CL (2006) Loss of emerin at the nuclear envelope disrupts the Rb1/E2F and MyoD developmental pathways during muscle regeneration. Hum Mol Genet 15: 637–651PubMedCrossRefGoogle Scholar
  32. Messner B, Baum H, Fischer P, Quasthoff S, Neumeier D (2000) Expression of messenger RNA of the cardiac isoforms of troponin T and I in myopathic skeletal muscle. Clin Chem 114:544–549Google Scholar
  33. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309:2064–2067PubMedCrossRefGoogle Scholar
  34. Moran JL, Li Y, Hill AA, Mounts WM, Miller CP (2002) Gene expression changes during mouse skeletal myoblast differentiation revealed by transcriptional profiling. Physiol Genomics 10:103–111PubMedGoogle Scholar
  35. Nabeshima Y, Hanaoka K, Hayasaka M, Esumi E, Li S, Nonaka I, Nabeshima Y (1993) Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364:532–535PubMedCrossRefGoogle Scholar
  36. Nicolas N, Mira J-C, Gallien CL, Chanoine C (1998) Localization of Myf-5, MRF4 and α cardiac actin mRNAs in regenerating Xenopus skeletal muscle. C R Acad Sic 321:355–364Google Scholar
  37. Paoni NF, Peale F, Wang F, Errett-Baroncini C, Steinmetz H, Toy K, Bai W, Williams PM, Bunting S, Gerritsen ME, Powell-Braxton L (2002) Time course of skeletal muscle repair and gene expression following acute hind limb ischemia in mice. Physiol Genomics 11:263–272PubMedGoogle Scholar
  38. Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, Leahy P, Li J, Guo W, Andrade FH (2002) A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice Hum Mol Genet 11:263–272CrossRefGoogle Scholar
  39. Rantanen J, Hurme T, Lukka R, Heino J, Kalimo H (1995) Satellite cell proliferation and the expression of myogenin and desmin in regenerating skeletal muscle: evidence for two different populations of satellite cells. Lab Invest 72:341–347PubMedGoogle Scholar
  40. Rudnicki MA, Braun T, Hinuma S, Jaenisch R (1992) Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 71:383–390PubMedCrossRefGoogle Scholar
  41. Rudnicki MA, Schneglesberg PNJ, Stead RH, Braun T, Arnold HH, Jaenisch R (1993) MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75:1351–1359PubMedCrossRefGoogle Scholar
  42. Seo J, Hoffman EP (2006) Probe set algorithms: is there a rational best bet? BMC Bioinformatics 7:395PubMedCrossRefGoogle Scholar
  43. Shen X, Collier JM, Hlaing M, Zhang L, Delshad EH, Bristow J, Bernstein HS (2003) Genome-wide examination of myoblast cell cycle withdrawal during differentiation. Dev Dyn 226:128–138PubMedCrossRefGoogle Scholar
  44. Sterrenburg E, Turk R, ‘t Hoen PA, van Deutekom JC, Boer JM, van Ommen GJ, den Dunnen JT (2004) Large-scale gene expression analysis of human skeletal myoblast differentiation. Neuromuscul Disord 14:507–518PubMedCrossRefGoogle Scholar
  45. Suzuki N, Aoki M, Hinuma Y, Takahashi T, Onodera Y, Ishigaki A, Kato M, Warita H, Tateyama M, Itoyama Y (2005) Expression profiling with progression of dystrophic change in dysferlin-deficient mice (SJL). Neurosci Res 52:47–60PubMedCrossRefGoogle Scholar
  46. Swynghedauw B (1986) Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 66:710–771PubMedGoogle Scholar
  47. Tajbakhsh S, Rocancort D, Buckingham M (1996) Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature 384:266–270PubMedCrossRefGoogle Scholar
  48. Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf5 act upstream of MyoD. Cell 89:127–138PubMedCrossRefGoogle Scholar
  49. Tomczak KK, Marinescu VD, Ramoni MF, Sanoudou D, Montanaro F, Han M, Kunkel LM, Kohane IS, Beggs AH (2004) Expression profiling and identification of novel genes involved in myogenic differentiation. FASEB J 18:403–405PubMedGoogle Scholar
  50. Tseng BS, Zhao P, Pattison JS, Gordon SE, Granchelli JA, Madsen RW, Folk LC, Hoffman EP, Booth FW (2002) Regenerated mdx mouse skeletal muscle shows differential mRNA expression. J Appl Physiol 93:537–545PubMedGoogle Scholar
  51. Turk R, Sterrenburg E, de Meijer EJ, van Ommen GJ, den Dunnen JT, ’t Hoen PA (2005) Muscle regeneration in dystrophin-deficient mdx mice studied by gene expression profiling. BMC Genomics 6:98PubMedCrossRefGoogle Scholar
  52. Winokur ST, Chen YW, Masny PS, Martin JH, Ehmsen JT, Tapscott SJ, van der Maarel SM, Hayashi Y, Flanigan KM (2003) Expression profiling of FSHD muscle supports a defect in specific stages of myogenic differentiation. Hum Mol Genet 12:2895–2907PubMedCrossRefGoogle Scholar
  53. Wright WE, Sassoon DA, Lin VK (1989) Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell 56:607–617PubMedCrossRefGoogle Scholar
  54. Yan Z, Choi S, Liu X, Zhang M, Schageman JJ, Lee SY, Hart R, Lin L, Thurmond FA, Williams RS (2003) Highly coordinated gene regulation in mouse skeletal muscle regeneration. J Biol Chem 278:8826–8836PubMedCrossRefGoogle Scholar
  55. Zhao P, Iezzi S, Carver E, Dressman D, Gridley T, Sartorelli V, Hoffman EP (2002) Slug is a novel downstream target of MyoD: temporal profiling in muscle regeneration. J Biol Chem 277: 30091–30101PubMedCrossRefGoogle Scholar
  56. Zhao P, Seo J, Wang Z, Wang Y, Shneiderman B, Hoffman EP (2003) In vivo filtering of in vitro expression data reveals MyoD targets. C R Biol 326:1049–1065PubMedCrossRefGoogle Scholar
  57. Zhao P, Hoffman EP (2004) Embryonic myogenesis pathways in muscle regeneration. Dev Dyn 229: 380–392PubMedCrossRefGoogle Scholar
  58. Zhao P, Caretti G, Mitchell S, McKeehan WL, Boskey AL, Pachman LM, Sartorelli V, Hoffman EP (2006) Fgfr4 is required for effective muscle regeneration in vivo: Delineation of a MyoD-Tead2-Fgfr4 transcriptional pathway. J Biol Chem 281:429–438PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Po Zhao
    • 1
  • Eric Hoffman
    • 1
  1. 1.Research Center for Genetic MedicineChildren’s National Medical CenterWashingtonUSA

Personalised recommendations