Relaying the Signal During Myogenesis: Intracellular Mediators and Targets

  • Roddy S. O’Connor
  • Grace K. Pavlath
Part of the Advances in Muscle Research book series (ADMR, volume 3)


Satellite Cell Muscle Regeneration Myoblast Differentiation Myoblast Fusion Myoblast Proliferation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, KL, Friday BB, Thaloor D, TJ Murphy, Pavlath GK (1998) Activation and cellular localization of the cyclosporine A-sensitive transcription factor NF-AT in skeletal muscle cells. Mol Biol Cell 9:2905–2916PubMedGoogle Scholar
  2. Adamo S, Caporale C, Nervi C, Ceci R, Molinaro M (1989) Activity and regulation of calcium- phospholipid-dependent protein kinase in differentiating chick myogenic cells. J Cell Biol 108:153–158PubMedCrossRefGoogle Scholar
  3. Al-Khalili L, Chibalin AV, Yu M, Sjodin B, Nylen C, Zierath JR, Krook A (2004) MEF2 activation in differentiated primary human skeletal muscle cultures requires coordinated involvement of parallel pathways. Am J Physiol Cell Physiol 286:C1410–C1416PubMedCrossRefGoogle Scholar
  4. Allen, M, L Svensson, M Roach, J Hambor, J McNeish, CA Gabel. (2000) Deficiency of the stress kinase p38alpha results in embryonic lethality: characterization of the kinase dependence of stress responses of enzyme-deficient embryonic stem cells. J Exp Med 191:859–870PubMedCrossRefGoogle Scholar
  5. Armand AS, Pariset C, Laziz I, Launay T, Fiore F, Della B, Gaspera, Birnbaum D, Charbonnier F, Chanoine C (2005) FGF6 regulates muscle differentiation through a calcineurin-dependent pathway in regenerating soleus of adult mice. J Cell Physiol 204:297–308PubMedCrossRefGoogle Scholar
  6. Arnaudeau S, Holzer N, Konig S, Bader CR, Bernheim L (2006) Calcium sources used by post-natal human myoblasts during initial differentiation. J Cell Physiol 208:435–445PubMedCrossRefGoogle Scholar
  7. Balcerzak D, Poussard S, Brustis JJ, Elamrani N, Soriano M, Cottin P, Ducastaing A (1995) An antisense oligodeoxyribonucleotide to m-calpain mRNA inhibits myoblast fusion. J Cell Sci 108 (Pt 5):2077–2082PubMedGoogle Scholar
  8. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  9. Baudier J, Bergeret E, Bertacchi N, Weintraub H, Gagnon J, Garin J (1995) Interactions of myogenic bHLH transcription factors with calcium-binding calmodulin and S100a (alpha) proteins. Biochemistry 34:7834–7846PubMedCrossRefGoogle Scholar
  10. Bennett AM, Tonks NK (1997) Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 278:1288–1291PubMedCrossRefGoogle Scholar
  11. Bidaud, I, Monteil A, Nargeot J, Lory P (2006) Properties and role of voltage-dependent calcium channels during mouse skeletal muscle differentiation. J Muscle Res Cell Motil 27:75–81PubMedCrossRefGoogle Scholar
  12. Bijlenga P, Liu JH, Espinos E, Haenggeli CA, Fischer-Lougheed J, Bader CR, Bernheim L (2000) T-type alpha 1H Ca2+ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts. Proc Natl Acad Sci U S A 97:7627–7632PubMedCrossRefGoogle Scholar
  13. Boczan J, Boros S, Mechler F, Kovacs L, Biro T (2000) Differential expressions of protein kinase C isozymes during proliferation and differentiation of human skeletal muscle cells in vitro. Acta Neuropathol (Berl) 99:96–104CrossRefGoogle Scholar
  14. Bondesen BA, Mills ST, Kegley KM, Pavlath GK (2004) The COX-2 pathway is essential during early stages of skeletal muscle regeneration. Am J Physiol Cell Physiol 287:C475–C483PubMedCrossRefGoogle Scholar
  15. Bryan BA, Mitchell DC, Zhao L, Ma W, Stafford LJ, Teng BB, Liu M (2005) Modulation of muscle regeneration, myogenesis, adipogenesis by the Rho family guanine nucleotide exchange factor GEFT Mol Cell Biol 25:11089–11101PubMedCrossRefGoogle Scholar
  16. Capiati DA, Limbozzi F, Tellez-Inon MT, Boland RL (1999) Evidence on the participation of protein kinase C alpha in the proliferation of cultured myoblasts. J Cell Biochem 74:292–300PubMedCrossRefGoogle Scholar
  17. Capiati, DA, Vazquez G, Tellez Inon MT, Boland RL (2000) Antisense oligonucleotides targeted against protein kinase c alpha inhibit proliferation of cultured avian myoblasts. Cell Prolif 33:307–315PubMedCrossRefGoogle Scholar
  18. Carrasco, MA, Marambio P, Jaimovich E (1997) Changes in IP3 metabolism during skeletal muscle development in vivo and in vitro. Comp Biochem Physiol B Biochem Mol Biol 116:173–181PubMedCrossRefGoogle Scholar
  19. Castellani L, Salvati E, Alema S, Falcone G (2006) Fine regulation of RhoA and Rock is required for skeletal muscle differentiation. J Biol Chem 281:15249–15257PubMedCrossRefGoogle Scholar
  20. Cha JH, Woo SK, Han KH, Kim YH, Handler JS, Kim J, Kwon HM (2001) Hydration status affects nuclear distribution of transcription factor tonicity responsive enhancer binding protein in rat kidney. J Am Soc Nephrol 12:2221–2230PubMedGoogle Scholar
  21. Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238PubMedCrossRefGoogle Scholar
  22. Charrasse S, Comunale F, Grumbach Y, Poulat F, Blangy A, Gauthier-Rouviere C (2006) RhoA GTPase regulates M-cadherin activity and myoblast fusion. Mol Biol Cell 17:749–759PubMedCrossRefGoogle Scholar
  23. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38:228–233PubMedCrossRefGoogle Scholar
  24. Constantin B, Cognard C, Raymond G (1996) Myoblast fusion requires cytosolic calcium elevation but not activation of voltage-dependent calcium channels. Cell Calcium 19:365–374PubMedCrossRefGoogle Scholar
  25. Cseri, J, H Szappanos, Szigeti GP, Csernatony Z, Kovacs L, Csernoch L (2002) A purinergic signal transduction pathway in mammalian skeletal muscle cells in culture. Pflugers Arch 443:731–738PubMedCrossRefGoogle Scholar
  26. Dahl SC, Handler JS, Kwon HM (2001) Hypertonicity-induced phosphorylation and nuclear localization of the transcription factor TonEBP Am J Physiol Cell Physiol 280:C248–C253PubMedGoogle Scholar
  27. Dalski A, Wagner HJ, Schwinger E, Zuhlke C (2000) Quantitative PCR analysis of different splice forms of NFAT5 revealed specific gene expression in fetal and adult brain. Brain Res Mol Brain Res 83:125–127PubMedCrossRefGoogle Scholar
  28. David JD, Higginbotham CA (1981) Fusion of chick embryo skeletal myoblasts: interactions of prostaglandin E1, adenosine 3′:5′ monophosphate, and calcium influx. Dev Biol 82:308–316PubMedCrossRefGoogle Scholar
  29. David JD, See WM, Higginbotham CA (1981) Fusion of chick embryo skeletal myoblasts: role of calcium influx preceding membrane union. Dev Biol 82:297–307PubMedCrossRefGoogle Scholar
  30. de la Pompa, JL, Timmerman LA, Takimoto H, Yoshida H, Elia AJ, Samper E, Potter J, Wakeham A, Marengere L, Langille BL, Crabtree GR, Mak TW (1998) Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392:182–186PubMedCrossRefGoogle Scholar
  31. Disatnik MH, Boutet SC, Lee CH, Mochly-Rosen D, Rando TA (2002) Sequential activation of individual PKC isozymes in integrin-mediated muscle cell spreading: a role for MARCKS in an integrin signaling pathway. J Cell Sci 115:2151–2163PubMedGoogle Scholar
  32. Dourdin N, Balcerzak D, Brustis JJ, Poussard S, Cottin P, Ducastaing A (1999) Potential m-calpain substrates during myoblast fusion. Exp Cell Res 246:433–442PubMedCrossRefGoogle Scholar
  33. Dourdin N, Brustis JJ, Balcerzak D, Elamrani N, Poussard S, Cottin P, Ducastaing A (1997) Myoblast fusion requires fibronectin degradation by exteriorized m-calpain. Exp Cell Res 235:385–394PubMedCrossRefGoogle Scholar
  34. Duguez, S, Bihan MC, Gouttefangeas D, Feasson L, Freyssenet D (2003) Myogenic and nonmyogenic cells differentially express proteinases, Hsc/Hsp70, and BAG-1 during skeletal muscle regeneration. Am J Physiol Endocrinol Metab 285:E206–E215PubMedGoogle Scholar
  35. Dulong S, Goudenege S, Vuillier-Devillers K, Manenti S, Poussard S, Cottin P (2004) Myristoylated alanine-rich C kinase substrate (MARCKS) is involved in myoblast fusion through its regulation by protein kinase Calpha and calpain proteolytic cleavage. Biochem J 382:1015–1023PubMedCrossRefGoogle Scholar
  36. Elamrani N, Brustis JJ, Dourdin N, Balcerzak D, Poussard S, Cottin P, Ducastaing A (1995) Desmin degradation and Ca(2+)-dependent proteolysis during myoblast fusion. Biol Cell 85:177–183PubMedCrossRefGoogle Scholar
  37. Entwistle A, Curtis DH, Zalin RJ (1986) Myoblast fusion is regulated by a prostanoid of the one series independently of a rise in cyclic AMP J Cell Biol 103:857–866PubMedCrossRefGoogle Scholar
  38. Entwistle A, Zalin RJ, Bevan S, Warner AE (1988a) The control of chick myoblast fusion by ion channels operated by prostaglandins and acetylcholine. J Cell Biol 106:1693–1702CrossRefGoogle Scholar
  39. Entwistle A, Zalin RJ, Warner AE, Bevan S (1988b) A role for acetylcholine receptors in the fusion of chick myoblasts. J Cell Biol 106:1703–1712CrossRefGoogle Scholar
  40. Fedorov YV, Jones NC, Olwin BB (1998) Regulation of myogenesis by fibroblast growth factors requires beta-gamma subunits of pertussis toxin-sensitive G proteins. Mol Cell Biol 18:5780–5787PubMedGoogle Scholar
  41. Ferraris JD, Williams CK, Persaud P, Zhang Z, Chen Y, Burg MB (2002) Activity of the TonEBP/OREBP transactivation domain varies directly with extracellular NaCl concentration. Proc Natl Acad Sci U S A 99:739–744PubMedCrossRefGoogle Scholar
  42. Fischer-Lougheed J, Liu JH, Espinos E, Mordasini D, Bader CR, Belin D, Bernheim L (2001) Human myoblast fusion requires expression of functional inward rectifier Kir2.1 channels. J Cell Biol 153:677–686PubMedCrossRefGoogle Scholar
  43. Fornaro M, Burch PM, Yang W, Zhang L, Hamilton CE, Kim JH, Neel BG, Bennett AM (2006) SHP-2 activates signaling of the nuclear factor of activated T cells to promote skeletal muscle growth. J Cell Biol 175:87–97PubMedCrossRefGoogle Scholar
  44. Franchi-Gazzola R, Visigalli R, Dall’Asta V, Sala R, Woo SK, Kwon HM, Gazzola GC, Bussolati O (2001) Amino acid depletion activates TonEBP and sodium-coupled inositol transport. Am J Physiol Cell Physiol 280:C1465–C1474PubMedGoogle Scholar
  45. Friday BB, Horsley V, Pavlath GK (2000) Calcineurin activity is required for the initiation of skeletal muscle differentiation. J Cell Biol 149:657–666PubMedCrossRefGoogle Scholar
  46. Friday BB, Mitchell PO, Kegley KM, Pavlath GK (2003) Calcineurin initiates skeletal muscle differentiation by activating MEF2 and MyoD Differentiation 71:217–227PubMedCrossRefGoogle Scholar
  47. Friday BB, Pavlath GK (2001) A calcineurin- and NFAT-dependent pathway regulates Myf5 gene expression in skeletal muscle reserve cells. J Cell Sci 114:303–310PubMedGoogle Scholar
  48. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875PubMedCrossRefGoogle Scholar
  49. Glading A, Bodnar RJ, Reynolds IJ, Shiraha H, Satish L, Potter DA, Blair HC, Wells A (2004) Epidermal growth factor activates m-calpain (calpain II), at least in part, by extracellular signal-regulated kinase-mediated phosphorylation. Mol Cell Biol 24:2499–2512PubMedCrossRefGoogle Scholar
  50. Griffin BW, Klimko P, Crider JY, Sharif NA (1999) AL-8810: a novel prostaglandin F2 alpha analog with selective antagonist effects at the prostaglandin F2 alpha (FP) receptor. J Pharmacol Exp Ther 290:1278–1284PubMedGoogle Scholar
  51. Griffin BW, Magnino PE, Pang IH, Sharif NA (1998) Pharmacological characterization of an FP prostaglandin receptor on rat vascular smooth muscle cells (A7r5) coupled to phosphoinositide turnover and intracellular calcium mobilization. J Pharmacol Exp Ther 286:411–418PubMedGoogle Scholar
  52. Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ (1997) Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386:296–299PubMedCrossRefGoogle Scholar
  53. Han J, Lee JD, Jiang Y, Li Z, Feng L, Ulevitch RJ (1996) Characterization of the structure and function of a novel MAP kinase (MKK6). J Biol Chem 271:2886–2891PubMedCrossRefGoogle Scholar
  54. Hartwig JH, Thelen M, Rosen A, Janmey PA, Nairn AC, Aderem A (1992) MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium-calmodulin. Nature 356:618–622PubMedCrossRefGoogle Scholar
  55. Hawke TJ, Kanatous SB, Martin CM, Goetsch SC, Garry DJ (2006) Rad is temporally regulated within myogenic progenitor cells during skeletal muscle regeneration. Am J Physiol Cell Physiol 290:C379–C387PubMedCrossRefGoogle Scholar
  56. Hollinger S, Hepler JR (2002) Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev 54:527–559PubMedCrossRefGoogle Scholar
  57. Horsley V, Friday BB, Matteson S, Kegley KM, Gephart J, Pavlath GK (2001) Regulation of the growth of multinucleated muscle cells by an NFATC2-dependent pathway. J Cell Biol 153:329–338PubMedCrossRefGoogle Scholar
  58. Horsley V, Jansen KM, Mills ST, Pavlath GK (2003) IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113:483–494PubMedCrossRefGoogle Scholar
  59. Horsley V, Pavlath GK (2003) Prostaglandin F2(alpha) stimulates growth of skeletal muscle cells via an NFATC2-dependent pathway. J Cell Biol 161:111–118PubMedCrossRefGoogle Scholar
  60. Huang Y, Wang KK (2001) The calpain family and human disease. Trends Mol Med 7:355–362PubMedCrossRefGoogle Scholar
  61. Hubbard KB, Hepler JR (2006) Cell signalling diversity of the Gqalpha family of heterotrimeric G proteins. Cell Signal 18:135–150PubMedCrossRefGoogle Scholar
  62. Jauliac S, Lopez-Rodriguez C, Shaw LM, Brown LF, Rao A, Toker A (2002) The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol 4:540–544PubMedCrossRefGoogle Scholar
  63. Joffroy S, Dourdin N, Delage JP, Cottin P, Koenig J, Brustis JJ (2000) M-calpain levels increase during fusion of myoblasts in the mutant muscular dysgenesis (mdg) mouse. Int J Dev Biol 44:421–428PubMedGoogle Scholar
  64. Jones NC, Tyner KJ, Nibarger L, Stanley HM, Cornelison DD, Fedorov YV, Olwin BB (2005) The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell. J Cell Biol 169:105–116PubMedCrossRefGoogle Scholar
  65. Kegley KM, Gephart J, Warren GL, Pavlath GK (2001) Altered primary myogenesis in NFATC3(-/-) mice leads to decreased muscle size in the adult. Dev Biol 232:115–126PubMedCrossRefGoogle Scholar
  66. Kim HK, Lee YS, Sivaprasad U, Malhotra A, Dutta A (2006) Muscle-specific microRNA miR-206 promotes muscle differentiation. J Cell Biol 174:677–687PubMedCrossRefGoogle Scholar
  67. Kim SS, Kim JH, Kim HS, Park DE, Chung CH (2000) Involvement of the theta-type protein kinase C in translocation of myristoylated alanine-rich C kinase substrate (MARCKS) during myogenesis of chick embryonic myoblasts. Biochem J 347(Pt 1):139–146PubMedCrossRefGoogle Scholar
  68. Kim SS, Kim JH, Lee SH, Chung SS, Bang OS, Park D, Chung CH (2002) Involvement of protein phosphatase-1-mediated MARCKS translocation in myogenic differentiation of embryonic muscle cells. J Cell Sci 115:2465–2473PubMedGoogle Scholar
  69. Knudsen KA (1985) The calcium-dependent myoblast adhesion that precedes cell fusion is mediated by glycoproteins. J Cell Biol 101:891–897PubMedCrossRefGoogle Scholar
  70. Knudsen KA, Myers L, McElwee SA (1990) A role for the Ca2(+)-dependent adhesion molecule, N-cadherin, in myoblast interaction during myogenesis. Exp Cell Res 188:175–184PubMedCrossRefGoogle Scholar
  71. Konig S, Beguet A, Bader CR, Bernheim L (2006) The calcineurin pathway links hyperpolarization (Kir2.1)-induced Ca2+ signals to human myoblast differentiation and fusion. Development 133:3107–3114PubMedCrossRefGoogle Scholar
  72. Konig S, Hinard V, Arnaudeau S, Holzer N, Potter G, Bader CR, Bernheim L (2004) Membrane hyperpolarization triggers myogenin and myocyte enhancer factor-2 expression during human myoblast differentiation. J Biol Chem 279:28187–28196PubMedCrossRefGoogle Scholar
  73. Kramerova I, Kudryashova E, Tidball JG, Spencer MJ (2004) Null mutation of calpain 3 (p94) in mice causes abnormal sarcomere formation in vivo and in vitro. Hum Mol Genet 13:1373–1388PubMedCrossRefGoogle Scholar
  74. Kramerova I, Kudryashova E, Wu B, Spencer MJ (2006) Regulation of M-cadherin-β-catenin complex by calpain 3 during terminal stages of myogenic differentiation. Mol Cell Biol 26:8437–8447PubMedCrossRefGoogle Scholar
  75. Krauss RS, Cole F, Gaio U, Takaesu G, Zhang W, Kang JS (2005) Close encounters: regulation of vertebrate skeletal myogenesis by cell-cell contact. J Cell Sci 118:2355–2362PubMedCrossRefGoogle Scholar
  76. Kwon C, Han Z, Olson EN, Srivastava D (2005) MicroRNA1 influences cardiac differentiation in Drosophila and regulates Notch signaling. Proc Natl Acad Sci U S A 102:18986–18991PubMedCrossRefGoogle Scholar
  77. Larsen JK, Yamboliev IA, Weber LA, Gerthoffer WT (1997) Phosphorylation of the 27-kDa heat shock protein via p38 MAP kinase and MAPKAP kinase in smooth muscle. Am J Physiol 273:L930–L940PubMedGoogle Scholar
  78. Lee SD, Woo SK, Kwon HM (2002) Dimerization is required for phosphorylation and DNA binding of TonEBP/NFAT5. Biochem Biophys Res Commun 294:968–975PubMedCrossRefGoogle Scholar
  79. Li L, Zhou J, James G, Heller-Harrison R, Czech MP, Olson EN (1992) FGF inactivates myogenic helix-loop-helix proteins through phosphorylation of a conserved protein kinase C site in their DNA-binding domains. Cell 71:1181–1194PubMedCrossRefGoogle Scholar
  80. Liu JH, Bijlenga P, Fischer-Lougheed J, Occhiodoro T, Kaelin A, Bader CR, Bernheim L (1998) Role of an inward rectifier K+ current and of hyperpolarization in human myoblast fusion. J Physiol 510(Pt 2):467–476PubMedCrossRefGoogle Scholar
  81. Liu JH, Konig S, Michel M, Arnaudeau S, Fischer-Lougheed J, Bader CR, Bernheim L (2003) Acceleration of human myoblast fusion by depolarization: graded Ca2+ signals involved. Development 130:3437–3446PubMedCrossRefGoogle Scholar
  82. Lopez-Rodriguez C, Aramburu J, Jin L, Rakeman AS, Michino M, Rao A (2001) Bridging the NFAT and NF-kappaB families: NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stress. Immunity 15:47–58PubMedCrossRefGoogle Scholar
  83. Lopez-Rodriguez C, Aramburu J, Rakeman AS, Rao A (1999) NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun. Proc Natl Acad Sci U S A 96:7214–7219PubMedCrossRefGoogle Scholar
  84. McArdle A, Edwards RH, Jackson MJ (1994) Release of creatine kinase and prostaglandin E2 from regenerating skeletal muscle fibers. J Appl Physiol 76:1274–1278PubMedGoogle Scholar
  85. Miyabara EH, Aoki MS, Moriscot AS (2005) Cyclosporin A preferentially attenuates skeletal slow-twitch muscle regeneration. Braz J Med Biol Res 38:559–563PubMedCrossRefGoogle Scholar
  86. Miyakawa H, Woo SK, Dahl SC, Handler JS, Kwon HM (1999) Tonicity-responsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity. Proc Natl Acad Sci U S A 96:2538–2542PubMedCrossRefGoogle Scholar
  87. Moraczewski J, Nowotniak A, Wrobel E, Castagna M, Gautron J, Martelly I (2002) Differential changes in protein kinase C associated with regeneration of rat extensor digitorum longus and soleus muscles. Int J Biochem Cell Biol 34:938–949PubMedCrossRefGoogle Scholar
  88. Naguibneva, I, M Ameyar-Zazoua, A Polesskaya, S Ait-Si-Ali, R Groisman, M Souidi, S Cuvellier, A Harel-Bellan. (2006) The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol 8:278–284PubMedCrossRefGoogle Scholar
  89. Narumiya S, Sugimoto Y, Ushikubi F (1999) Prostanoid receptors: structures, properties, and functions. Physiol Rev 79:1193–1226PubMedGoogle Scholar
  90. O’Connor RS, Mills ST, Jones KA, Ho SN, Pavlath GK (2007) A combinatorial role for NFAT5 in both myoblast migration and differentiation during skeletal muscle myogenesis. J Cell Sci 120:149–159PubMedCrossRefGoogle Scholar
  91. Otis JS, Burkholder TJ, Pavlath GK (2005) Stretch-induced myoblast proliferation is dependent on the COX2 pathway. Exp Cell Res 310:417–425PubMedCrossRefGoogle Scholar
  92. Palmer RM, Reeds PJ, Atkinson T, Smith RH (1983) The influence of changes in tension on protein synthesis and prostaglandin release in isolated rabbit muscles. Biochem J 214:1011–1014PubMedGoogle Scholar
  93. Papahadjopoulos D, Nir S, Duzgunes N (1990) Molecular mechanisms of calcium-induced membrane fusion. J Bioenerg Biomembr 22:157–179PubMedCrossRefGoogle Scholar
  94. Pisaniello A, Serra C, Rossi D, Vivarelli E, Sorrentino V, Molinaro M, Bouche M (2003) The block of ryanodine receptors selectively inhibits fetal myoblast differentiation. J Cell Sci 116:1589–1597PubMedCrossRefGoogle Scholar
  95. Porter GA Jr, Makuck RF, Rivkees SA (2002) Reduction in intracellular calcium levels inhibits myoblast differentiation. J Biol Chem 277:28942–28947CrossRefGoogle Scholar
  96. Poussard S, Dulong S, Aragon B, Jacques Brustis J, Veschambre P, Ducastaing A, Cottin P (2001) Evidence for a MARCKS-PKCalpha complex in skeletal muscle. Int J Biochem Cell Biol 33:711–721PubMedCrossRefGoogle Scholar
  97. Przybylski RJ, MacBride RG, Kirby AC (1989) Calcium regulation of skeletal myogenesis. I Cell content critical to myotube formation. In Vitro Cell Dev Biol 25:830–838PubMedCrossRefGoogle Scholar
  98. Przybylski RJ, Szigeti V, Davidheiser S, Kirby AC (1994) Calcium regulation of skeletal myogenesis. II Extracellular and cell surface effects. Cell Calcium 15:132–142PubMedCrossRefGoogle Scholar
  99. Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A 103:8721–8726PubMedCrossRefGoogle Scholar
  100. Raynaud F, Carnac G, Marcilhac A, Benyamin Y (2004) m-Calpain implication in cell cycle during muscle precursor cell activation. Exp Cell Res 298:48–57PubMedCrossRefGoogle Scholar
  101. Richard I, Broux O, Allamand V, Fougerousse F, Chiannilkulchai N, Bourg N, Brenguier L, Devaud C, Pasturaud P, Roudaut C et al (1995) Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81:27–40PubMedCrossRefGoogle Scholar
  102. Rosenberg MI, Georges SA, Asawachaicharn A, Analau E, Tapscott SJ (2006) MyoD inhibits Fstl1 and Utrn expression by inducing transcription of miR-206. J Cell Biol 175:77–85PubMedCrossRefGoogle Scholar
  103. Ryten M, Dunn PM, Neary JT, Burnstock G (2002) ATP regulates the differentiation of mammalian skeletal muscle by activation of a P2X5 receptor on satellite cells. J Cell Biol 158:345–355PubMedCrossRefGoogle Scholar
  104. Sakuma K, Nakao R, Aoi W, Inashima S, Fujikawa T, Hirata M, Sano M, Yasuhara M (2005) Cyclosporin A treatment upregulates Id1 and Smad3 expression and delays skeletal muscle regeneration. Acta Neuropathol (Berl) 110:269–280CrossRefGoogle Scholar
  105. Sakuma K, Nishikawa J, Nakao R, Watanabe K, Totsuka T, Nakano H, Sano M, Yasuhara M (2003) Calcineurin is a potent regulator for skeletal muscle regeneration by association with NFATc1 and GATA-2. Acta Neuropathol (Berl) 105:271–280Google Scholar
  106. Salzberg S, Mandelboim M, Zalcberg M, Shainberg A, Mandelbaum M (1995) Interruption of myogenesis by transforming growth factor beta 1 or EGTA inhibits expression and activity of the myogenic-associated (2′-5′ oligoadenylate synthetase and PKR Exp Cell Res 219:223–232CrossRefGoogle Scholar
  107. Schulze M, Belema-Bedada F, Technau A, Braun T (2005) Mesenchymal stem cells are recruited to striated muscle by NFAT/IL-4-mediated cell fusion. Genes Dev 19:1787–1798PubMedCrossRefGoogle Scholar
  108. Schutzle UB, Wakelam MJ, Pette D (1984) Prostaglandins and cyclic AMP stimulate creatine kinase synthesis but not fusion in cultured embryonic chick muscle cells. Biochim Biophys Acta 805:204–210PubMedCrossRefGoogle Scholar
  109. Serrano AL, Murgia M, Pallafacchina G, Calabria E, Coniglio P, Lomo T, Schiaffino S (2001) Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. Proc Natl Acad Sci U S A 98:13108–13113PubMedCrossRefGoogle Scholar
  110. Shainberg A, Yagil G, Yaffe D (1969) Control of myogenesis in vitro by Ca 2 + concentration in nutritional medium. Exp Cell Res 58:163–167PubMedCrossRefGoogle Scholar
  111. Shen W, Li Y, Tang Y, Cummins J, Huard J (2005) NS-398, a cyclooxygenase-2-specific inhibitor, delays skeletal muscle healing by decreasing regeneration and promoting fibrosis. Am J Pathol 167:1105–1117PubMedGoogle Scholar
  112. Shen W, Prisk V, Li Y, Foster W, Huard J (2006) Inhibited skeletal muscle healing in cyclooxygenase-2 gene-deficient mice: the role of PGE2 and PGF2alpha. J Appl Physiol 101:1215–1221PubMedCrossRefGoogle Scholar
  113. Shin KS, Park JY, Ha DB, Chung CH, Kang MS (1996) Involvement of K(Ca) channels and stretch-activated channels in calcium influx, triggering membrane fusion of chick embryonic myoblasts. Dev Biol 175:14–23PubMedCrossRefGoogle Scholar
  114. Sokol NS, Ambros V (2005) Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev 19:2343–2354PubMedCrossRefGoogle Scholar
  115. Sotiropoulos A, Ohanna M, Kedzia C, Menon RK, Kopchick JJ, Kelly PA, Pende M (2006) Growth hormone promotes skeletal muscle cell fusion independent of insulin-like growth factor 1 up-regulation. Proc Natl Acad Sci U S A 103:7315–7320PubMedCrossRefGoogle Scholar
  116. Stiber JA, Tabatabaei N, Hawkins AF, Hawke T, Worley PF, Williams RS, Rosenberg P (2005) Homer modulates NFAT-dependent signaling during muscle differentiation. Dev Biol 287:213–224PubMedCrossRefGoogle Scholar
  117. Stockholm D, Barbaud C, Marchand S, Ammarguellat F, Barritault D, Richard I, Beckmann J, Martelly I (1999) Studies on calpain expression during differentiation of rat satellite cells in primary cultures in the presence of heparin or a mimic compound. Exp Cell Res 252:392–400PubMedCrossRefGoogle Scholar
  118. Szigeti GP, Szappanos H, Deli T, Cseri J, Kovacs L, Csernoch L (2007) Differentiation-dependent alterations in the extracellular ATP-evoked calcium fluxes of cultured skeletal muscle cells from mice. Pflugers Arch 453:509–518PubMedCrossRefGoogle Scholar
  119. Takaesu G, Kang JS, Bae GU, Yi MJ, Lee CM, Reddy EP, Krauss RS (2006) Activation of p38αβ MAPK in myogenesis via binding of the scaffold protein JLP to the cell surface protein Cdo. J Cell Biol 175:383–388PubMedCrossRefGoogle Scholar
  120. Trama J, Go WY, Ho SN (2002) The osmoprotective function of the NFAT5 transcription factor in T cell development and activation. J Immunol 169:5477–5488PubMedGoogle Scholar
  121. Trama J, Lu Q, Hawley RG, Ho SN (2000) The NFAT-related protein NFATL1 (TonEBP/NFAT5) is induced upon T cell activation in a calcineurin-dependent manner. J Immunol 165:4884–4894PubMedGoogle Scholar
  122. Vandenburgh HH, Shansky J, Solerssi R, Chromiak J (1995) Mechanical stimulation of skeletal muscle increases prostaglandin F2 alpha production, cyclooxygenase activity, cell growth by a pertussis toxin sensitive mechanism. J Cell Physiol 163:285–294PubMedCrossRefGoogle Scholar
  123. Williams NG, Zhong H, Minneman KP (1998) Differential coupling of alpha1-, alpha2-, beta-adrenergic receptors to mitogen-activated protein kinase pathways and differentiation in transfected PC12 cells. J Biol Chem 273:24624–24632PubMedCrossRefGoogle Scholar
  124. Winslow MM, Pan M, Starbuck M, Gallo EM, Deng L, Karsenty G, Crabtree GR (2006) Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell 10:771–782PubMedCrossRefGoogle Scholar
  125. Woo SK, Dahl SC, Handler JS, Kwon HM (2000) Bidirectional regulation of tonicity-responsive enhancer binding protein in response to changes in tonicity. Am J Physiol Renal Physiol 278:F1006–F1012PubMedGoogle Scholar
  126. Xu Q, Yu L, Liu L, Cheung CF, Li X, Yee SP, Yang XJ, Wu Z (2002) p38 Mitogen-activated protein kinase-, calcium-calmodulin-dependent protein kinase-, calcineurin-mediated signaling pathways transcriptionally regulate myogenin expression. Mol Biol Cell 13:1940–1952PubMedCrossRefGoogle Scholar
  127. Yamauchi J, Nagao M, Kaziro Y, Itoh H (1997) Activation of p38 mitogen-activated protein kinase by signaling through G protein-coupled receptors. Involvement of Gbetagamma and Galphaq/11 subunits. J Biol Chem 272:27771–27777PubMedCrossRefGoogle Scholar
  128. Yoshida N, Yoshida S, Koishi K, Masuda K, Nabeshima Y (1998) Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates ‘reserve cells’. J Cell Sci 111(Pt 6):769–779Google Scholar
  129. Zalin RJ (1977) Prostaglandins and myoblast fusion. Dev Biol 59:241–248PubMedCrossRefGoogle Scholar
  130. Zalin RJ (1987) The role of hormones and prostanoids in the in vitro proliferation and differentiation of human myoblasts. Exp Cell Res 172:265–281PubMedCrossRefGoogle Scholar
  131. Zetser A, Gredinger E, Bengal E (1999) p38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the Mef2c transcription factor. J Biol Chem 274:5193–5200PubMedCrossRefGoogle Scholar
  132. Zhang Z, Ferraris JD, Brooks HL, Brisc I, Burg MB (2003) Expression of osmotic stress-related genes in tissues of normal and hyposmotic rats. Am J Physiol Renal Physiol 285:F688–F693PubMedGoogle Scholar
  133. Zhao Y, Samal E, Srivastava D (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436:214–220PubMedCrossRefGoogle Scholar
  134. Zimowska M, Szczepankowska D, Streminska W, Papy D, Tournaire MC, Gautron J, Barritault D, Moraczewski J, Martelly I (2001) Heparan sulfate mimetics modulate calpain activity during rat Soleus muscle regeneration. J Cell Physiol 188:178–187PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Roddy S. O’Connor
    • 1
    • 2
  • Grace K. Pavlath
    • 2
  1. 1.Graduate Program in Molecular and Systems PharmacologyUSA
  2. 2.Department of PharmacologyEmory UniversityAtlanta

Personalised recommendations