Skeletal Muscle Reconstitution During Limb and Tail Regeneration in Amphibians: Two Contrasting Mechanisms

  • Elly M. Tanaka
Part of the Advances in Muscle Research book series (ADMR, volume 3)


Satellite Cell Tail Regeneration Mononucleate Cell Satellite Cell Activation Blastema Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blau HM, Chiu CP, Pavlath GK, Webster C (1985a) Muscle gene expression in heterokaryons. Adv Exp Med Biol 182:231–247Google Scholar
  2. Blau HM, Pavlath GK, Hardeman EC, Chiu CP, Silberstein L, Webster SG, Miller SC, Webster C (1985b) Plasticity of the differentiated state. Science 230:758–766CrossRefGoogle Scholar
  3. Bryant SV, Iten LE (1976) Supernumerary limgs in amphibians: experimental production in Notophthalmus viridescens and a new interpretation of their formation. Dev Biol 50:212–234PubMedCrossRefGoogle Scholar
  4. Carlson BM (1967) Studies on the mechanism of implant-induced supernumerary limb formation in Urodeles. I. The histology of supernumerary limb formation in the adult newt, Triturus viridescens. J Exp Zool 164:227–242PubMedCrossRefGoogle Scholar
  5. Carlson BM (2003) Muscle regeneration in amphibians and mammals: passing the torch. Dev Dyn 226:167–181PubMedCrossRefGoogle Scholar
  6. Chen Y, Lin G, Slack JM (2006) Control of muscle regeneration in the Xenopus tadpole tail by Pax7. Development 133:2303–2313PubMedCrossRefGoogle Scholar
  7. Echeverri K, Clarke JD, Tanaka EM (2001) In vivo imaging indicates muscle fiber dedifferentiation is a major contributor to the regenerating tail blastema. Dev Biol 236:151–164PubMedCrossRefGoogle Scholar
  8. Endo T, Bryant SV, Gardiner DM (2004) A stepwise model system for limb regeneration. Dev Biol 270:135–145PubMedCrossRefGoogle Scholar
  9. Ferretti P, Brockes JP (1988) Culture of newt cells from different tissues and their expression of a regeneration-associated antigen. J Exp Zool 247:77–91PubMedCrossRefGoogle Scholar
  10. Gargioli C, Slack JM (2004) Cell lineage tracing during Xenopus tail regeneration. Development 131:2669–2679PubMedCrossRefGoogle Scholar
  11. Goss RJ (1969) Principles of regeneration. Academic Press, New YorkGoogle Scholar
  12. Hay ED (1959) Electron Microscopic Observations of Muscle Dedifferentiation in Regenerating Amblystoma Limbs. Developmental Biology 1:555–585CrossRefGoogle Scholar
  13. Hay ED, Fischman DA (1961) Origin of the blastema in regenerating limbs of the newt Triturus viridescens. An autoradiographic study using tritiated thymidine to follow cell proliferation and migration. Dev Biol 3:26–59PubMedCrossRefGoogle Scholar
  14. Holtzer S (1956) The inductive activiy of the spinal cord in urodele tail regeneration. Journal of Morphology 99:1–39CrossRefGoogle Scholar
  15. Imokawa Y, Brockes J P (2003) Selective activation of thrombin is a critical determinant for vertebrate lens regeneration. Curr Biol 13:877–881PubMedCrossRefGoogle Scholar
  16. Iujvidin S, Fuchs O, Nudel U, Yaffe D (1990) SV40 immortalizes myogenic cells: DNA synthesis and mitosis in differentiating myotubes. Differentiation 43:192–203PubMedCrossRefGoogle Scholar
  17. Koshiba K, Kuroiwa A, Yamamoto H, Tamura K, Ide H (1998) Expression of Msx genes in regenerating and developing limbs of axolotl. J Exp Zool 282 :703–714PubMedCrossRefGoogle Scholar
  18. Kumar A, Velloso CP, Imokawa Y, Brockes JP (2000) Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema. Dev Biol 218:125–136PubMedCrossRefGoogle Scholar
  19. Kumar A, Velloso, CP, Imokawa Y, Brockes, JP (2004) The regenerative plasticity of isolated urodele myofibers and its dependence on MSX1. PLoS Biol 2:1168–1176CrossRefGoogle Scholar
  20. Lentz, TL (1969) Cytological studies of muscle dedifferentiation and differentiation during limb regeneration of the newt Triturus. Am J Anat 124:447–479PubMedCrossRefGoogle Scholar
  21. Lo DC, Allen F, Brockes JP (1993) Reversal of muscle differentiation during urodele limb regeneration. Proc Natl Acad Sci U S A 90:7230–7234PubMedCrossRefGoogle Scholar
  22. Maden M, Turner RN (1978) Supernumerary limbs in the axolotl. Nature 273:232–235PubMedCrossRefGoogle Scholar
  23. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495PubMedCrossRefGoogle Scholar
  24. McGann CJ, Odelberg SJ, Keating MT (2001) Mammalian myotube dedifferentiation induced by newt regeneration extract. Proc Natl Acad Sci U S A 98:13699–13704PubMedCrossRefGoogle Scholar
  25. Morrison JI, Loof S, He P, Simon A (2006) Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. J Cell Biol 172:433–440PubMedCrossRefGoogle Scholar
  26. Odelberg SJ, Kollhoff A, Keating MT (2000) Dedifferentiation of mammalian myotubes induced by msx1. Cell 103:1099–1109PubMedCrossRefGoogle Scholar
  27. Popiela H (1976) Muscle satellite cells in urodele amphibians: faciliatated identification of satellite cells using ruthenium red staining. J Exp Zool 198:57–64PubMedCrossRefGoogle Scholar
  28. Reginelli AD, Wang YQ, Sassoon D, Muneoka K (1995) Digit tip regeneration correlates with regions of Msx1 (Hox 7) expression in fetal and newborn mice. Development 121:1065–1076PubMedGoogle Scholar
  29. Ryffel GU, Werdien D, Turan G, Gerhards A, Goosses S, Senkel S (2003) Tagging muscle cell lineages in development and tail regeneration using Cre recombinase in transgenic Xenopus. Nucleic Acids Res 31:e44–e57PubMedCrossRefGoogle Scholar
  30. Schnapp E, Tanaka EM (2005) Quantitative evaluation of morpholino-mediated protein knockdown of GFP, MSX1, and PAX7 during tail regeneration in Ambystoma mexicanum. Dev Dyn 232:162–170PubMedCrossRefGoogle Scholar
  31. Simon A, Brockes JP (2002) Thrombin activation of S-phase reentry by cultured pigmented epithelial cells of adult newt iris. Exp Cell Res 281:101–106PubMedCrossRefGoogle Scholar
  32. Song K, Wang Y, Sassoon D (1992) Expression of Hox-7.1 in myoblasts inhibits terminal differentiation and induces cell transformation. Nature 360:477–481PubMedCrossRefGoogle Scholar
  33. Stocum D (1995) “Wound repair, regeneration, and artificial tissues.” Springer-Verlag, New YorkGoogle Scholar
  34. Straube WL, Brockes JP, Drechsel DN, Tanaka EM (2004) Plasticity and reprogramming of differentiated cells in amphibian regeneration: partial purification of a serum factor that triggers cell cycle re-entry in differentiated muscle cells. Cloning Stem Cells 6:333–344PubMedCrossRefGoogle Scholar
  35. Tanaka EM (2003) Regeneration: if they can do it, why can’t we? Cell 113:559–562PubMedCrossRefGoogle Scholar
  36. Tanaka EM, Brockes JP (1998) A target of thrombin activation promotes cell cycle re-entry by urodele muscle cells. Wound Repair Regen 6:371–381PubMedCrossRefGoogle Scholar
  37. Tanaka EM, Drechsel DN, Brockes JP (1999) Thrombin regulates S-phase re-entry by cultured newt myotubes. Curr Biol 9:792–799PubMedCrossRefGoogle Scholar
  38. Tanaka EM, Gann AA, Gates PB, Brockes JP (1997) Newt myotubes reenter the cell cycle by phosphorylation of the retinoblastoma protein. J Cell Biol 136:155–165PubMedCrossRefGoogle Scholar
  39. Tiainen M, Spitkovsky D, Jansen-Durr P, Sacchi A, Crescenzi M (1996) Expression of E1A in terminally differentiated muscle cells reactivates the cell cycle and suppresses tissue-specific genes by separable mechanisms. Mol Cell Biol 16:5302–5312PubMedGoogle Scholar
  40. Velloso CP, Kumar A, Tanaka EM, Brockes JP (2000) Generation of mononucleate cells from post-mitotic myotubes proceeds in the absence of cell cycle progression. Differentiation 66:239–246PubMedCrossRefGoogle Scholar
  41. Velloso CP, Simon A, Brockes JP (2001) Mammalian postmitotic nuclei reenter the cell cycle after serum stimulation in newt/mouse hybrid myotubes. Curr Biol 11:855–858PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Elly M. Tanaka
    • 1
  1. 1.Max-Planck Institute of Molecular Cell Biology and Genetics01307 DresdenGermany

Personalised recommendations