Learning from Nature’s Experiments on the Thyroid Hormone Receptor; X-Ray Structures of RTH Mutant Ligand-Binding Domains

  • Ben H. Sandler
  • John D. Baxter
  • Robert J. Fletterick
Part of the Endocrine Updates book series (ENDO, volume 22)


The syndrome of resistance to thyroid hormone (RTH) is characterized by unresponsiveness to thyroid hormone by the product(s) of one of the human thyroid hormone receptor-β (hTR β) genes. It is an uncommon disorder, but thyroid hormone receptor-β (hTR β) genes. It is an uncommon disorder, but nonetheless one that requires diagnosis by the physician to avoid mismanagement of the patient. Study of the syndrome has resulted in substantial insights into the mechanisms for thyroid action. Most cases are due to mutations in the hTR β ligand-binding domain (LBD). Studies of X-ray crystal structures of this domain have provided additional insights into how these mutations affect receptor function, that in turn reveal more information about mechanisms of TR function in general. In this review, we discuss what has been learned from studies using X-ray crystallography of receptors containing mutations found in RTH.


Thyroid Hormone Nuclear Receptor Hinge Region Thyroid Hormone Receptor Dimerization Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dressel, U. & Baniahmad, A. “Thyroid hormone receptors.” In Nuclear Receptors and Genetic Disease, Burris, T. P. & McCabe, E., ed. Academic Press, 2001.Google Scholar
  2. 2.
    Shang, Y. F. & Brown, M. 2002. Molecular determinants for the tissue specificity of SERMs. Science 295:2465–2468.PubMedCrossRefGoogle Scholar
  3. 3.
    Adams, M. A., et al. 1994. Genetic analysis of 29 kindreds with generalized and pituitary resistance to thyroid hormone. J. Clin. Invest. 94:506–515.PubMedCrossRefGoogle Scholar
  4. 4.
    Wagner, R. L., Apriletti, J. W., McGrath, M.E., West, B. L., Baxter, J. D., & Fletterick, R. J. 1995. A structural role for hormone in the thyroid hormone receptor. Nature 378:690–697.PubMedCrossRefGoogle Scholar
  5. 5.
    Wagner, R. L., et al. & Fletterick, R. J. 2001. Hormone selectivity in thyroid hormone receptors. Mol. Endocrinol. 15:398–410.PubMedCrossRefGoogle Scholar
  6. 6.
    Lazar, M. A. 1993. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr. Rev. 14:184–193.PubMedGoogle Scholar
  7. 7.
    Wilkinson, J. R. & Towle, H. C. 1997. Identification and characterization of the AF-1 transactivation domain of thyroid hormone receptor betal. J Biol Chem 272: 23824–28332.PubMedCrossRefGoogle Scholar
  8. 8.
    Saatcioglu, F., Deng, T. & Karin, M. 1993. A novel cis element mediating ligandindependent activation by c-ErbA: implications for hormonal regulation. Cell 75: 1095–1105.PubMedCrossRefGoogle Scholar
  9. 9.
    Ng, L, et al. & Curran, T. 1995. N-terminal variants of thyroid hormone receptor P: differential function and potential contribution to syndromes of resistance to thyroid hormone. Mol. Endocrinol. 9:1202–1213.PubMedCrossRefGoogle Scholar
  10. 10.
    Yang, Z., Hong, S., & Privaisky, M. L. 1999. Transcriptional anti-repression: thyroid hormone receptor β–2 recruits SMRT corepressor but interferes with subsequent assembly of a functional corepressor complex. J. Biol. Chem. 274: 37131–37138.PubMedCrossRefGoogle Scholar
  11. 11.
    Hu, X. & Lazar, M. A. 1999. The CoRNR motif controls the recruitment of corepressors by nuclear hormone receptors. Nature 402:93–96.PubMedCrossRefGoogle Scholar
  12. 12.
    Tagami, T., Madison, L. D., Nagaya, T., & Jameson, J. L. 1997. Nuclear receptor corepressors activate rather than suppress basal transcription of genes that are negatively regulated by thyroid hormone. Mol. Cell. Biol. 17:2642–2648.PubMedGoogle Scholar
  13. 13.
    Heery, D. M., Kalkhoven, E., Hoare, S., & Parker, M. G. 1997. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736.PubMedCrossRefGoogle Scholar
  14. 14.
    An, J., et al. & Leitman, D. 1999. Estradiol repression of tumor necrosis factor-a transcription requires estrogen receptor activation function-2 and is enhanced by coactivators. Proc. Nat. Acad. Sci. 96: 15161–15166.PubMedCrossRefGoogle Scholar
  15. 15.
    Rogatsky, I., Zarember, K. A., & Yamamoto, K. R. 2001. Factor recruitment and TJF2/GRIP1 corepressor activity at a collagenase-3 response element that mediates regulation by phorbol esters and hormones. EMBO J. 20:6071–6083.PubMedCrossRefGoogle Scholar
  16. 16.
    Egea, P. et al. & Moras, D. 2000. Crystal Structure of the Human Rxr Alpha Ligand-Binding Domain Bound to its Natural Ligand: 9-Cis Retinoic Acid EMBO J. 19:2592–2601.PubMedCrossRefGoogle Scholar
  17. 17.
    Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H., & Moras, D. 1995. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature 375:377–382.PubMedCrossRefGoogle Scholar
  18. 18.
    Feng, W. et al. & West, B. L. 1998. Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science 280:1747–1749.PubMedCrossRefGoogle Scholar
  19. 19.
    Darimont, B. D. et al. & Yamamoto, K. R. 1998. Structure and specificity of nuclear receptor-coactivator interactions. Gene. Dev. 12:3343–3356.PubMedCrossRefGoogle Scholar
  20. 20.
    Marimuthu, A., et al. & West, B. L. 2002. TR surfaces and conformations required to bind nuclear receptor corepressor. Mol. Endocrinol. 16: 271–286.PubMedCrossRefGoogle Scholar
  21. 21.
    Xu, H. E. et al. 2002. Structural Basis for Antagonist-Mediated Recruitment of Nuclear Co-Repressors by PPARalpha. Nature 415:813–817.PubMedCrossRefGoogle Scholar
  22. 22.
    Ding, X. F. et al. & Stallcup, M. R. 1998. Nuclear receptor-binding sites of coactivators glucocorticoid receptor activating protein 1 (GRIP 1) and steroid receptor coactivator 1 (SRC-1): multiple motifs with different binding specificities. Mol. Endocrinol. 12:302–313.PubMedCrossRefGoogle Scholar
  23. 23.
    Li, H., Leo, C., Schroen, D. J. & Chen, J. D. 1997. Characterization of receptor interaction and transcriptional repression by the corepressor SMRT. Mol. Endocrinol. 11:2025–2037.PubMedCrossRefGoogle Scholar
  24. 24.
    Webb, P. et al. & Kushner, P. J. 2000. The nuclear receptor corepressor (N-CoR) contains three isoleucine motifs (I/LXXII) that serve as receptor interaction domains (IDs). Mol. Endocrinol. 14:1976–1985.PubMedCrossRefGoogle Scholar
  25. 25.
    Sande, S. & Privaisky, M. L. 1996. Identification of TRACs (T-3 receptor- associating cofactors), a family of cofactors that associate with, and modulate the activity of, nuclear hormone receptors. Mol. Endocrinol. 10:813–825.PubMedCrossRefGoogle Scholar
  26. 26.
    Sharma, D. & Fondell, J. 2000. Temporal formation of distinct thyroid hormone receptor coactivator complexes in HeLa cells. Mol. Endocrinol. 14:2001–2009.PubMedCrossRefGoogle Scholar
  27. 27.
    Hollenberg, A. N., Monden, T., Madura, J., Lee, K., & Wondisford, F. E. 1996. Function of nuclear co-repressor protein on thyroid hormone response elements is regulated by the receptor NB domain. J. Biol. Chem. 271:28516–28520.PubMedCrossRefGoogle Scholar
  28. 28.
    Safer, J. D. et al. 1997. Isoform variable action among thyroid hormone receptor mutants provides insight into pituitary resistance to thyroid hormone. Mol. Endocrinol. 11:16–26.PubMedCrossRefGoogle Scholar
  29. 29.
    Nishiyama, K. et al. & Nakamura, H. 1998. Difference in dominant negative activities between mutant thyroid hormone receptors α1 and β1 with an identical truncation in the extreme carbonyl-terminal tau4 domain. Mol. Cell Endocrinol. 138:95–104.PubMedCrossRefGoogle Scholar
  30. 30.
    Hall, J. M., McDonnell, D. P., & Korach, K. S. 2002. Allosteric regulation of estrogen receptor structure, function, and coactivator recruitment by different estrogen response elements. Mol. Endocrinol. 16: 469–486.PubMedCrossRefGoogle Scholar
  31. 31.
    Wood, J. R., Likhite, V. S., Loven, M. A. & Nardulli, A. M. 2001. A11osteric modulation of estrogen receptor conformation by different estrogen response elements. Mol. Endocrinol. 15: 1114–1126.PubMedCrossRefGoogle Scholar
  32. 32.
    Pissios, P., Tzameli, I., Kushner, P., & Moore, D. M. 2000. Dynamic stabilization of nuclear receptor ligand binding domains by hormone or corepressor binding. Mol. Cell. 6:245–253.PubMedCrossRefGoogle Scholar
  33. 33.
    Yen, P. M. et al. 1992. Triiodothyronine (T3) decreases binding to DNA by T3- receptor homodimers but not receptor-auxiliary protein heterodimers. J. Biol. Chem. 267:3565–3568.PubMedGoogle Scholar
  34. 34.
    Refetoff, S., DeWind, L. T. & DeGroot, L.J. 1967. Familial syndrome combining deaf-mutism, stuppled epiphyses, goiter and abnormally high PBI: possible target organ refractoriness to thyroid hormone. J. Clin. Endocrinol. Metab. 27:279–294PubMedCrossRefGoogle Scholar
  35. 35.
    Takeda, K., Baizano, S., Sakurai, A., DeGroot, L., & Refetoff, S. 1991. Screening of nineteen unrelated families with generalized resistance to thyroid hormone for known point mutations in the thyroid hormone receptor β gene and the detection of a new mutation. J. Clin. Invest. 87:496–502.PubMedCrossRefGoogle Scholar
  36. 36.
    Yoh, S. M., Chatterjee, V. K. K., & Privaisky, M. L. 1997. Thyroid hormone resistance syndrome manifests as an aberrant interaction between mutant T3 receptors and transcriptional corepressors. Mol. Endocrinol. 11:470–480.PubMedCrossRefGoogle Scholar
  37. 37.
    Nagaya, T., Fujieda, M., & Seo, H. 1998. Requirement of corepressor binding of thyroid hormone receptor mutants for dominant negative inhibition. Biochem. Bioph. Res. Co. 247:620–623.CrossRefGoogle Scholar
  38. 38.
    Refetoff, S., Weiss, R. E., & Usala, S. J. 1993. The syndromes of resistance to thyroid hormone. Endocr. Rev. 14:348–399.PubMedGoogle Scholar
  39. 39.
    Collingwood, T. N., Wagner, R., Matthews, C. H. et al. 1998. A role for helix 3 of the TRβ ligand-binding domain in coactivator recruitment identified by characterization of a third cluster of mutations in resistance to thyroid hormone. EMBO J. 17:4760–4770.PubMedCrossRefGoogle Scholar
  40. 40.
    Takeda, K., Sakurai, A., DeGroot, L., and Refetoff, S. 1992b. Recessive inheritance of thyroid hormone resistance caused by complete deletion of the protein- coding region of the thyroid hormone receptor-β gene. J. Clin. Endocrinol. Metab. 74:49–55.PubMedCrossRefGoogle Scholar
  41. 41.
    diFulvio, M., Chiesa, A. E., Baranzini, S. E., Gruniero-Papendieck, L., Masini-Repiso, A. M., & Targovnik, H. M. 1997. A new point mutation (M313T) in the thyroid hormone receptor O gene in a patient with resistance to thyroid hormone. Thyroid 7:43–44.PubMedCrossRefGoogle Scholar
  42. 42.
    Usala, S. J., Menke, J. B., Hao, E. H., et al. 1992. Mutations in the c-erbA β gene in two different patients with selective pituitary resistance to thyroid hormones. 74th Annual Meeting of the Endocrine Society, San Antonio, Texas 135. Abstract 335.Google Scholar
  43. 43.
    Pohlenz, J., Wildhardt, G., Zabel, B. & Willgerodt, H. 1997. Resistance to thyroid hormone in a family caused by a new point mutation L330S in the thyroid receptor (TR) β gene. Thyroid 7:39–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Macchia, E., Gurnell, M., Agostini, M. et al. 1997. Identification and characterization of a novel de novo mutation (L346V) in the thyroid hormone receptor β gene in a family with generalized thyroid hormone resistance. Eur. Endocrinol. 137:370–376.CrossRefGoogle Scholar
  45. 45.
    Tsukaguchi, H., Yoshimasa, Y., Fujimoto, K. et al. 1995. Three novel mutations of thyroid hormone receptor β gene in unrelated patients with resistance to thyroid hormone: two mutations of the same codon (H435L and H435Q) produce separate subtypes of resistance. J. Clin. Endocrinol. Metab. 80:3613–3616.PubMedCrossRefGoogle Scholar
  46. 46.
    Parilla, R., Mixson, A. J., McPherson, J. A., McClaskey, J. H. & Weintraub, B. D. 1991. Characterization of seven novel mutations of the c-erbA β gene in unrelated kindreds with generalized thyroid hormone resistance. Evidence for two “hot spot” regions of the ligand binding domain. J. Clin. Invest. 88:2123–2130.CrossRefGoogle Scholar
  47. 47.
    Weiss, R. E., Chyna, B., Duell, P. B., Hayashi, Y., Sunthornthepvarakul, T. & Refetoff, S. 1994. A new point mutation (C446R) in the thyroid hormone receptor-β gene of a family with resistance to thyroid hormone. J. Clin. Endocrinol. Metab. 78:1253–1256.PubMedCrossRefGoogle Scholar
  48. 48.
    Miyoshi, Y., Nakamura, H., Tagami, T. et al. 1998. Comparison of the functional properties of three different truncated thyroid hormone receptors identified in subjects with resistance to thyroid hormone. Moll. Cell. Endocrinol. 137:169–176.CrossRefGoogle Scholar
  49. 49.
    Tagami, T., Nakamura, H., Sasaki, S., Miyoshi, Y., & Nakao, K. 1997. Dimerization properties of mutant thyroid hormone b-receptors with auxiliary proteins. Journal of Endocrinology 154:523–533.PubMedCrossRefGoogle Scholar
  50. 50.
    Brucker-Davis, F., Skarulis, M. C., Grace, M. B. et al. 1995. Genetic and clinical features of 42 kindreds with resistance to thyroid hormone. The National Institutes of Health Prospective Study. Ann. Intern. Med. 123: 572–583.PubMedGoogle Scholar
  51. 51.
    Tagami, T., Gu, W. X., Peairs, P. T., West, B. L., & Jameson, J. L. 1998. A novel natural mutation in the thyroid hormone receptor defines a dual functional domain that exchanges nuclear receptor corepressors and coactivators. Mol. Endocrinol. 12:1888–1902.PubMedCrossRefGoogle Scholar
  52. 52.
    Collingwood, T. N. et al. 1997. A natural transactivation mutation in the thyroid hormone β receptor: impaired interaction with putative transcriptional mediators. Proc. Nat. Acad. Sci. USA 94:248–253.PubMedCrossRefGoogle Scholar
  53. 53.
    Hiramatsu, R., Abe, M., Morita, M., Noguchi, S., & Suzuki, T. 1994. Generalized resistance to thyroid hormone: identification of a novel c-erbA β thyroid hormone receptor variant (Leu450) in a Japanese family and analysis of its secondary structure by the Chou and Fasman method. Jpn. J. Hum. Genet. 39:365–377.PubMedCrossRefGoogle Scholar
  54. 54.
    Weiss, R. E., Tunca, H., Gerstein, H. C., & Refetoff, S. 1996. A new mutation in the thyroid hormone receptor (TR) β gene (V458A) in a family with resistance to thyroid hormone (RTH). Thyroid 6:311–312.PubMedCrossRefGoogle Scholar
  55. 55.
    Weiss, R. E., Tunca, H., Gerstein, H. C., & Refetoff, S. 1996. A new mutation in the thyroid hormone receptor (TR) β gene (V458A) in a family with resistance to thyroid hormone (RTH). Thyroid 6:311–312PubMedCrossRefGoogle Scholar
  56. 56.
    Wu, Y., Delerive, P., Chin, W. W., Burris, T. 2002. Requirement of helix 1 and the AF-2 domain of the thyroid hormone receptor for coactivation by PGC-1. J. Biol. Chem. 277:8898–8905.PubMedCrossRefGoogle Scholar
  57. 57.
    Feng, X., Jiang, Y., Meltzer, P., & Yen, P.M. 2000. Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol. Endocrinol. 14:947–955.PubMedCrossRefGoogle Scholar
  58. 58.
    Ando, S., et al. & Yoshimi, T. 1996. Introducing a point mutation identified in a patient with pituitary resistance to thyroid hormone (Arg 338 to Trp) into other mutant thyroid hormone receptors weakens their dominant negative activities. J. Endocrinol. 151:293–300.PubMedCrossRefGoogle Scholar
  59. 59.
    Hao, E. et al. & Usala, S. J. 1994. Divergent dimerization properties of mutant p1 thyroid hormone receptors are associated with different dominant negative activities. Mol. Endocrinol. 8:841–851.PubMedCrossRefGoogle Scholar
  60. 60.
    Clifton-Bligh, R. J., et al. 1998. A Novel TRβ mutation (R383H) in resistance to thyroid hormone syndrome predominantly impairs corepressor release and negative transcriptional regulation. Mol. Endocrinol. 12:609–621.PubMedCrossRefGoogle Scholar
  61. 61.
    Flynn, T. R. et al. 1994. A novel C-terminal domain in the thyroid hormone receptor selectively mediates thyroid hormone inhibition. J. Biol. Chem. 269:32713–32716.PubMedGoogle Scholar
  62. 62.
    Safer, J. D., et al. & Wondisford, F. E. 1999. The thyroid hormone receptor-β gene mutation R383H is associated with isolated central resistance to thyroid hormone. J. Cline. Endocr. Metab. 84:3099–3109.CrossRefGoogle Scholar
  63. 63.
    Collingwood, T. N., Adams, M., Tone, Y., & Chatterjee, V. K. K. 1994. Spectrum of Transcriptional, Dimerization, and Dominant Negative Properties of Twenty Different Mutant Thyroid Hormone β-Receptors in Thyroid Hormone Resistance Syndrome. Moil. Endocrinol. 8:1262–1277.CrossRefGoogle Scholar
  64. 64.
    Ribeiro, R. C. J. et al. 2001. Definition of the Surface in the Thyroid Hormone Receptor Ligand Binding Domain for Association as Homodimers and Heterodimers with Retinoid X Receptor. J. Biol. Chem. 276:14987–14995.PubMedCrossRefGoogle Scholar
  65. 65.
    Huber, R. et al. & Fletterick, R. J. 2003. Two resistance to thyroid hormone mutants with impaired hormone binding. Mol. Endocrinol. 17:643–652.PubMedCrossRefGoogle Scholar
  66. 66.
    Nomura, Y., Nagaya, T., Tsukaguchi, H., Takamatsu, J., Seo, H. 1996. Amino acid substitutions of thyroid hormone receptor p at codon 435 with resistance to thyroid hormone selectively alter homodimer formation. Endocrinology 137:4082–4086.PubMedCrossRefGoogle Scholar
  67. 67.
    Huber, B. R. et al. & Fletterick, R. J. 2003. Thyroid hormone receptor-beta mutations conferring hormone resistance and reduced corepressor release exhibit decreased stability in the N-terminal ligand-binding domain. Mol. Endocrinol. 17:107–116.PubMedCrossRefGoogle Scholar
  68. 68.
    Hoerlein, A. J. et al. 1995. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404.CrossRefGoogle Scholar
  69. 69.
    Chen, J. D. & Evans, R. M. 1995. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457.PubMedCrossRefGoogle Scholar
  70. 70.
    Privaisky, M. L. & Yoh, S. M. 2000. Resistance to thyroid hormone (RTH) syndrome reveais novel determinants regulating interaction of T3 receptor with corepressor. Mol. Cell. Endocrinol. 159:109–124.CrossRefGoogle Scholar
  71. 71.
    Johnson B. A., et al. 2000. Ligand-induced stabilization of PPARγ monitored by NMR spectroscopy: implicatons for nuclkear receptor activation. J. Mol. Biol. 298:187–194.PubMedCrossRefGoogle Scholar
  72. 72.
    Desclozeaux, M., Krylova, I., Horn, F., Fletterick, R. J., & Ingraham, H. A. 2002. Phosphorylation and intramolecular stabilization of the ligand bindind domain in the nuclear receptor steroidogenic factor I. Mol. Cell. Biol. 22:7193–7203.PubMedCrossRefGoogle Scholar
  73. 73.
    Zubkova, I. & Subauste, J. S. 2002. Dimerization of v-erbA on inverted repeats. Biochem. Bioph. Res. Co. 294:35–41.CrossRefGoogle Scholar
  74. 74.
    Takeshita, A., et al. & Chin, W. W. 1998. Thyroid hormone response elements differentially modulate the interactions of thyroid hormone receptors with two receptor binding domains in the steroid receptor coactivator-1. J. Biol. Chem. 273:21554–21562.PubMedCrossRefGoogle Scholar
  75. 75.
    Rastinejad, F., Perlmann, T., Evans, R. M., & Sigler, P. B. 1995. Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature 375:203–211.PubMedCrossRefGoogle Scholar
  76. 76.
    Luisi, B. & Freedman, L. 1995. Dymer, dymer binding tight. Nature 375:359–360.PubMedCrossRefGoogle Scholar
  77. 77.
    Kurokawa, R. et al. & Glass, C. K. 1993. Differential orientations of the DNA- binding domain and carboxy-terminal dimerization interface regulate binding site selection by nuclear receptor heterodimers. Genes Dev. 7:1423–1435.PubMedCrossRefGoogle Scholar
  78. 78.
    Onigata, K., Yagi, H., Sakurai, A. et al., 1995. A novel point mutation (R243Q) in exon 7 of the c-erbA β thyroid hormone receptor gene in a family with resistance to thyroid hormone. Thyroid 5:355–358.PubMedCrossRefGoogle Scholar
  79. 79.
    Macchia, E., Agostini, M., Sarkissian, G., et al. 1998. Detection of a new de novo mutation at codon 251 of exon 8 of thyroid hormone receptor β gene in an Italian kindred with resistance to thyroid hormone. J. Endocrinol. Invest. 21: 226–233.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Ben H. Sandler
    • 1
  • John D. Baxter
    • 2
  • Robert J. Fletterick
    • 1
  1. 1.Molecular Structures GroupUniversity of California San FranciscoUSA
  2. 2.Metabolic Research UnitUniversity of California San FranciscoUSA

Personalised recommendations