Advertisement

Integrated Management Of Stone Fruit Diseases

  • A. Peter Sholberg
  • Frank Kappel
Chapter
Part of the Integrated Management of Plant Pests and Diseases book series (IMPD, volume 3)

Abstract

Stone fruit crops (apricot, cherry, peach, nectarine and plum) are subject to many diseases although only a few need yearly management. Brown rot blossom blight and fruit rot is one of these important diseases and has been studied in detail. Recent research has elucidated the importance of latent infection in the disease cycle of brown rot, allowing for better disease management. Brown rot is effectively controlled by fungicides belonging to several chemical classes, but resistance to benzimidazole fungicides is widespread and appears to be developing in demethylation inhibitor fungicides. Cultivars resistant to brown rot have been identified although they are not used commercially, but could be helpful in the selection of new resistant cultivars. Some other important stone fruit diseases are bacterial canker, Leucostoma canker, powdery mildew and postharvest fruit rots. Both bacterial canker and Leucostoma canker do not have adequate chemical controls but are managed using an integrated management approach that depends on resistance, good horticultural practices and exclusion of the pathogen from the orchard. Powdery mildew is controlled by fungicides but resistance is developing, so a strategy integrating the use of spray oils along with fungicides from different classes is recommended. Fruit rots caused by Monilinia spp., Botrytis cinerea,and Rhizopus spp. are always important problems for storage and transit of stone fruit crops. Fortunately, new fungicides are available for use during the postharvest phase that are very effective but need careful management to avoid resistance. In conclusion, the development of new molecular techniques for identification of pathogens and the use of them to aid in disease forecasting and risk management is leading to better management of stone fruit diseases.

Keywords

Powdery Mildew Latent Infection Sweet Cherry Sour Cherry Stone Fruit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adaskaveg, J. M. (1999). Fungicide management for postharvest fungal decay of sweet cherry in California. In: Proceedings of the Washington Tree Fruit Postharvest Conference (pp. 50-54). Yakima, WA.Google Scholar
  2. Adaskaveg, J. M., Förester, H., & Thompson, D. F. (2000). Identification and etiology of visible quiescent infections of Monilinia fructicola and Botrytis cinerea on cherry fruit. Plant Disease, 84, 328-333.CrossRefGoogle Scholar
  3. Adaskaveg, J. M., Kanetis, L., & Förester, H. (2005). Ensuring the future of postharvest disease control with new reduced-risk fungicides and resistance management strategies. Phytopathology, 95, S140.Google Scholar
  4. Adaskaveg, J. M., & Gubler, W. D. (2006). Cherry Bacterial Canker. UC IPM online. University of California Statewide Integrated Pest Management Program. Web site: http://www.ipm.ucdavis.edu/PMG/r105101511.html
  5. Adaskaveg, J., Hotz, B., Michailides, T., & Gubler, D. (2006). Efficacy and timing of fungicides, bactericides, and biologicals for deciduous tree fruit, nut crops, and grapevines 2006. UC IPM Online University of California Statewide Integrated Pest Management Program. Web site: http://www.ipm.ucdavis.edu/PDF/PMG/fungicideefficacytiming.pdf
  6. Bedford, K. E., Sholberg, P. L., & Kappel, F. (2003). Use of a detached leaf bioassay for screening sweet cherry cultivars for bacterial canker resistance. Acta Horticulturae, 622, 365-368.Google Scholar
  7. Biggs, A. R., & Northover, J. (1985). Inoculum sources for Monilinia fructicola in Ontario peach orchards. Canadian Journal of Plant Pathology, 7, 302-307.Google Scholar
  8. Biggs, A. R., & Miles, N.W. (1988). Association of suberin formation in uninoculated wounds with susceptibility to Leucostoma cincta and L. persooni in various peach cultivars. Phytopathology, 78, 1070-1074.CrossRefGoogle Scholar
  9. Biggs, A. R., & Northover, J. (1988a). Early and late-season susceptibility of peach fruits to Monilinia fructicola. Plant Disease, 72, 1070-1074.CrossRefGoogle Scholar
  10. Biggs, A. R., & Northover, J. (1988b). Influence of temperature and wetness duration on infection of peach and sweet cherry fruits by Monilinia fructicola. Phytopathology, 78, 1352-1356.CrossRefGoogle Scholar
  11. Biggs, A. R. (1989a). Integrated approach to controlling Leucostoma canker of peach in Ontario. Plant Disease, 73, 869-874.CrossRefGoogle Scholar
  12. Biggs, A .R. (1989b). Temporal changes in the infection court after wounding of peach bark and their association with cultivar variation in infection by Leucostoma persooni. Phytopathology, 79, 627-630.CrossRefGoogle Scholar
  13. Biggs, A. R., & Northover, J. (1989). Association of sweet cherry epidermal characters to Monilinia fructicola. HortScience, 24, 126-127.Google Scholar
  14. Biggs, A. R., & Peterson, C.A. (1990). Effect of chemical application to peach bark wounds on accumulation of lignin and suberin and susceptibility to Leucostoma persoonii. Phytopathology, 80, 861-865.CrossRefGoogle Scholar
  15. Biggs, A. R. (1991). Leaf abscission kinetics of peach cultivars and clones in relation to peach canker disease. Canadian Journal of Botany, 69, 2020-2025.CrossRefGoogle Scholar
  16. Biggs, A. R. (1995). Leucostoma canker. In: Ogawa J. M., Zehr E. I., Bird G. W., Ritchie D. F., Uriu K., & Uyemoto J. K. (Eds.), Compendium of stone fruit diseases (pp. 28-30). St. Paul, MN: APS Press.Google Scholar
  17. Biggs, A. R., El-Kholi, M. M., El-Neshawy, S., & Nickerson, R. (1997). Effects of calcium salts on growth, polygalacturonase activity and infection of peach fruit by Monilinia fructicola. Plant Disease, 81, 399-403.CrossRefGoogle Scholar
  18. Børve, J., Sekse, L., & Stensvand, A. (2000). Cuticular fractures promote postharvest fruit rot in sweet cherries. Plant Disease, 84, 1180-1184.CrossRefGoogle Scholar
  19. Cameron, H. R. (1970). Pseudomonas content of cherry trees. Phytopathology, 60, 1343-1346.Google Scholar
  20. Chu, C. L., Liu, W. T., Zhou, T., & Tsao, R. (1999). Control of postharvest gray mold rot of modified atmosphere packaged sweet cherries by fumigation with thymol and acetic acid. Canadian Journal of Plant Science, 79, 685-689.Google Scholar
  21. Corbin, J. B., Ogawa, J. M., & Schultz, H. B. (1968). Fluctuations in numbers of Monilinia laxa conidia in an apricot orchard during the 1966 season. Phytopathology, 58, 1387-1394.Google Scholar
  22. DeCal, A., & Melgarejo, P. (1994). Effects of Penicillium frequentans and its antibiotics on unmelanized hyphae of Monilinia laxa. Phytopathology, 84, 1010-1014.CrossRefGoogle Scholar
  23. Elmer, P. A. G., & Gaunt, R. E. (1994). The biological characteristics of dicarboximide-resistant isolates of Monilinia fructicola from New Zealand stone-fruit orchards. Plant Pathology, 43, 130-137.CrossRefGoogle Scholar
  24. Elmer, P. A. G., Gaunt, R. E., & Frampton, C. M. (1998). Spatial and temporal characteristics of dicarboximide-resistant strains of Monilinia fructicola and brown rot incidence in stone fruit. Plant Pathology, 47, 530-536.CrossRefGoogle Scholar
  25. Emery, K. M., Michailides, T. J., & Scherm, H. (2000). Incidence of latent infection of immature peach fruit by Monilinia fructicola and relationship to brown rot in Georgia. Plant Disease, 84, 853-857.CrossRefGoogle Scholar
  26. Emery, K. M., Scherm, H., & Savelle, A. T. (2002). Assessment of interactions between components of fungicide mixtures against Monilinia fructicola. Crop Protection, 21, 41-47.CrossRefGoogle Scholar
  27. Fallik, E. (2006). Hot water treatments for control of fungal decay on fresh produce. In: Sapers G. M., Gorny J. R., & Yousef A. E. (Eds.), Microbiology of fruits and vegetables. CRC Press, Boca Raton, FL: 461-477.Google Scholar
  28. Feliciano, A., Feliciano, A. J., & Ogawa, J. M. (1987). Monilinia fructicola resistance in the peach cultivar Bolinha. Phytopathology, 77, 776-780.CrossRefGoogle Scholar
  29. Feliciano, A. J. (1995). Peach and Nectarine. In: Ogawa J. M., Zehr E. I., Bird G. W., Ritchie D. F., Uriu K., & Uyemoto J. K. (Eds.), Compendium of stone fruit diseases (pp. 2-3). St. Paul, MN: APS Press.Google Scholar
  30. Flore, J. A., Kesner, C. D., & Webster, A. D. (1996). Tree canopy management and the orchard environment: principles and practices of pruning and training. In Webster A.D. & Looney N. E. (Eds.), Cherries: crop physiology, production and uses. (259-278). Wallingford, Oxon, UK: CAB International.Google Scholar
  31. Förster, H., & Adaskaveg, J. E. (2000). Early brown rot infections in sweet cherry are detected by Monilinia-specific DNA primers. Phytopathology, 90, 171-178.CrossRefPubMedGoogle Scholar
  32. Goodwine, W. (2005). The good, better and best resistance management strategies for postharvest disease control. Phytopathology, 95, S140.Google Scholar
  33. Gradziel, T. M., Bostock, R. M., & Adaskaveg, J. E. (2003). Resistance to brown rot disease in peach is determined by multiple structural and biochemical components. Acta Horticulturae, 622, 347-352.Google Scholar
  34. Grove, G. G. (1991). Powdery mildew of sweet cherry: influence of temperature and wetness duration on release and germination of ascospores of Podosphaera clandestina. Phytopathology, 81, 1271-1275.CrossRefGoogle Scholar
  35. Grove, G. G., & Boal, R. J. (1991a). Overwinter survival of Podosphaera clandestina in eastern Washington. Phytopathology, 81, 385-391.CrossRefGoogle Scholar
  36. Grove, G. G., & Boal, R. J. (1991b). Factors affecting germination of conidia of Podosphaera clandestina on leaves and fruit of sweet cherry. Phytopathology, 81, 1513-1518.CrossRefGoogle Scholar
  37. Grove, G. G. (1995). Powdery mildew. In: Ogawa J. M., Zehr E. I., Bird G. W., Ritchie D. F., Uriu K., and Uyemoto J. K. (Eds.), Compendium of Stone Fruit Diseases (pp. 12-14). St. Paul, MN: APS Press.Google Scholar
  38. Grove, G. G., Boal, R. J., & Bennett, L. H. (2000). Managing powdery mildew of cherry in Washington orchards and nurseries with spray oils. Plant Health Progress. Web site: http://www.plantmanagementnetwork.org/pub/php/research/sprayoil
  39. Grove, G. G., & Biggs, A. R. (2006). Production and dispersal of conidia of Leucostoma cinctum in peach and cherry orchards under irrigation in Eastern Washington. Plant Disease, 90, 587-591.CrossRefGoogle Scholar
  40. Gubler, W. D., Adaskaveg, J. E., & Hasey, J. K. (2006a). Peach: Brown rot blossom and twig blight. UC IPM Online- University of California Statewide Integrated Pest Management Program. Web site: http://www.ipm.ucdavis.edu
  41. Gubler, W. D., Adaskaveg, J. E., & Hasey, J. K. (2006b). Peach: Powdery mildew. UC IPM Online- University of California Statewide Integrated Pest Management Program. Web site: http://www.ipm.ucdavis.edu
  42. Hattingh, M. J., Roos, I. M., & Mansvelt, E. L. (1989). Infection and systemic invasion of deciduous fruit trees of Pseudomonas syringae in South Africa. Plant Disease, 73, 784-789.CrossRefGoogle Scholar
  43. Hattingh, M. J., & Roos, I. M. (1995). Bacterial canker. In: J. M. Ogawa, E. Zehr, G. W. Bird, D. F. Ritchie, K. Uriu, and J. K. Uyemoto (Eds.), Compendium of Stone Fruit Diseases (pp. 48-50). St. Paul, MN: APS Press.Google Scholar
  44. Hewitt, W. B., & Leach, L. D. (1939). Brown-rot Sclerotinias occurring in California and their distribution on stone fruit. Phytopathology, 29, 337-351.Google Scholar
  45. Hong, C. X., Holtz, B. A., Morgan, D. P., & Michailides, T. J. (1997). Significance of thinned fruit as a source of the secondary inoculum of Monilinia fructicola in California nectarine orchards. Plant Disease, 81, 519-524.CrossRefGoogle Scholar
  46. Hong, C. X., & Michailides, T. J. (1998). Effect of temperature on the discharge and germination of ascospores by apothecia of Monilinia fructicola. Plant Disease, 82, 195-202.CrossRefGoogle Scholar
  47. Hong, C. X., Michailides, T. J., & Holtz, B. A. (1998). Effects of wounding, inoculum density, and biological con troll agents on postharvest brown rot of stone fruits. Plant Disease, 82, 1210-1216.CrossRefGoogle Scholar
  48. Iezzoni, A. F. (1995). Sour cherry. In: Ogawa J. M., Zehr E. I., Bird G. W., Ritchie D. F., Uriu K. and Uyemoto J. K.(Eds.), Compendium of Stone Fruit Diseases (pp. 5-6). St. Paul, MN: APS Press.Google Scholar
  49. Ioos, R., & Frey, P. (2000). Genomic variation with Monilinia laxa, M. fructigena and M. fructicola and application to species identification by PCR. European Journal of Plant Pathology, 106, 373-378.CrossRefGoogle Scholar
  50. Jenkins, P. T., & Reinganum, C. (1965). The occurrence of a quiescent infection of stone fruits caused by Sclerotinia fructicola (Wint.) Rehm. Australian Journal of Agriculture and Research, 16, 131-140.CrossRefGoogle Scholar
  51. Jenkins, P. T. (1968). The longevity of conidia of Sclerotinia fructicola (Wint.) Rehm under field conditions. Australian Journal of Biological Science, 21, 937-945.Google Scholar
  52. Jesperson, G., & Bedford, K. (2001). Workshop on stone fruit diseases. British Columbia Orchardist, 39-42.Google Scholar
  53. Jones, A. L., & Sutton, T. B. (1996). Diseases of tree fruits in the east. Michigan State University Extension, NCR 45, East Lansing, MI.Google Scholar
  54. Kable, P. E., Fried, P. M., & MacKenzie, D. R. (1980). The spread of powdery mildew of peach. Phytopathology, 70, 601-604.Google Scholar
  55. Landgraf, F. A., & Zehr, E. I. (1982). Inoculum sources for Monilinia fructicola in South Carolina peach orchards. Phytopathology, 72, 185-190.Google Scholar
  56. Little, E. L., Bostock, R. M., & Kirkpatrick, B. C. (1998). Genetic characterization of Pseudomonas syringae pv. syringae strain from stone fruits in California. Applied and Environmental Microbiology, 64, 3818-3823.PubMedGoogle Scholar
  57. Liu, W. T., Chu, C. L., & Zhou, T. (2002). Thymol and acetic acid vapors reduce postgharvesgt brown rot of apricots and plums. HortScience, 37, 151-156.Google Scholar
  58. Luo, Y., & Michailides, T. J. (2001a). Factors affecting latent infection of prune fruit by Monilinia fructicola. Phytopathology, 91, 864-872.CrossRefGoogle Scholar
  59. Luo, Y., & Michailides, T. J. (2001b). Risk analysis for latent infection of prune by Monilinia fructicola in California. Phytopathology, 91, 1197-1208.CrossRefGoogle Scholar
  60. Luo, Y., Morgan, D. P., & Michailides, T. J. (2001). Risk analysis of brown rot blossom blight of prune caused by Monilinia fructicola. Phytopathology, 91, 759-768.CrossRefPubMedGoogle Scholar
  61. Luo, Y., & Michaildes, T. J. (2003). Threshold conditions that lead to latent infection to prune fruit rot caused by Monilinia fructicola. Phytopathology, 93, 102-111.CrossRefPubMedGoogle Scholar
  62. Ma, Z., & Michailides, T. J. (2005). Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 24, 853-863.CrossRefGoogle Scholar
  63. Manji, B. T. (1972). Apple powdery mildew on peach. Phytopathology, 62, 776.Google Scholar
  64. Margosan, D. A., Smilanick, J. L., Simmons, G. F., & Henson, D. J. (1997). Combination of hot water and ethanol to control postharvest decay of peaches and nectarines. Plant Disease, 81, 1405-1409.CrossRefGoogle Scholar
  65. Mari, M., Gregori, R., & Donati, I. (2004). Postharvest control of Monilinia laxa and Rhizopus stolonifer in stone fruit by peracetic acid. Postharvest Biology and Technology, 33, 319-325.CrossRefGoogle Scholar
  66. Michailides, T. J., & Spotts, R. A. (1990). Postharvest diseases of pome and stone fruits caused by Mucor piriformis in the Pacific Northwest and California. Plant Disease, 74, 537-543.CrossRefGoogle Scholar
  67. Michailides, T. J., Johnson, R. S., & Morgan, D. P. (1992). Effect of nitrogen fertilization on brown rot (Monilinia fructicola) susceptibility in nectarines. Phytopathology, 82, 1064.CrossRefGoogle Scholar
  68. Michailides, T. J., & Morgan, D. P. (1997). Influence of fruit-to-fruit contact on susceptibility of French prune to infection by Monilinia fructicola. Plant Disease, 81, 1416-1424.CrossRefGoogle Scholar
  69. Northover, J., & Biggs, A. R. (1990). Susceptibility of immature and mature sweet and sour cherries to Monilinia fructicola. Plant Disease, 74, 280-284.CrossRefGoogle Scholar
  70. Northover, J., & Cerkauskas, R. F. (1994). Detection and significance of symptomless latent infections of Monilinia fructicola in plums. Canadian Journal of Plant Pathology, 16, 30-34.Google Scholar
  71. Northover, J., & Biggs, A. R. (1995). Effect of conidial concentration of Monilinia fructicola on brown rot development in detached cherries. Canadian Journal of Plant Pathology, 17, 205-214.Google Scholar
  72. Ogawa, J. M., & English, H. (1960). Relative pathogenicity of two brown rot fungi, Sclerotinia laxa and Sclerotinia fructicola, on twigs and blossoms. Phytopathology, 50, 550-558.Google Scholar
  73. Ogawa, J. M., Bose, E., Manji, B. T., & Shreader, W. R. (1972). Bruising of sweet cherries resulting in internal browning and increased susceptibility to fungi. Phytopathology, 62, 579-580.CrossRefGoogle Scholar
  74. Ogawa, J. M., Manji, B. T., Bostock, R. M., Cânez, V. M., & Bose, E. A. (1984). Detection and characterization of benomyl-resistant Monilinia laxa on apricots. Plant Disease, 68, 29-31.CrossRefGoogle Scholar
  75. Ogawa, J. M., Manji, B. T., Adaskaveg, J.E., & Michailides, T. J. (1988). Population dynamics of benzimidazole-resistant Monilinia species on stone fruit trees in California. In: Delp C. J. (Ed.), Fungicide resistance in North America (pp. 36-39). St. Paul, MN: APS Press.Google Scholar
  76. Ogawa, J. M., & English, H. (1991). Diseases of temperate zone tree fruit and nut crops. Oakland, CA: University of California, Division of Agriculture and Natural Resources, Publication 3345.Google Scholar
  77. Ogawa, J. M., & Southwick, S. M. (1995). Apricot. In: Ogawa J. M., Zehr E. I., Bird G. W., Ritchie D. F., Uriu K., and Uyemoto J. K. (Eds.), Compendium of Stone Fruit Diseases (pp. 5-6). St. Paul, MN: APS Press.Google Scholar
  78. Ogawa, J. M., Zehr, E. I., Bird, G. W, Ritchie, D. F., Uriu, K., & Uyemoto, J. K. (1995a). Compendium of Stone Fruit Diseases. St. Paul, MN: APS Press.Google Scholar
  79. Ogawa, J. M., Zehr, E. I., & Biggs, A. R. (1995b). Brown rot. In: Ogawa J. M, Zehr, E. I., Bird G. W., Ritchie D. F., Uriu K. and Uyemoto J. K.(Eds.), Compendium of Stone Fruit Diseases (pp. 7-10). St. Paul, MN: APS Press.Google Scholar
  80. Olmstead, J. W., Lang, G. A., & Grove, G. G. (2001). Assessment of severity of powdery mildew infection of sweet cherry leaves by digital image analysis. HortScience, 36, 107-111.Google Scholar
  81. Olson, B. D., & Jones, A. L. (1983). Reduction of Pseudomonas syringae pv. morsprunorium on Montmorency sour cherry with copper and dynamics of the copper residues. Phytopathology, 73, 1520-1525.Google Scholar
  82. Ram, V., & Bhardwaj, L. N. (2004). Stone fruit diseases and their management. In: Naqvi S. A. M. H., (Ed.), Diseases of fruits and vegetables. Volume II (pp. 485-510). Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
  83. Rener, P. R., & Southwick, S. M. (1995). Sweet cherry. In J. M. Ogawa, E. I. Zehr, G. W. Bird, D. F. Ritchie, K. Uriu, & J. K. Uyemoto (Eds.), Compendium of Stone Fruit Diseases (pp. 4-5). St. Paul, MN: APS Press.Google Scholar
  84. Roche, M. M., & Azarenko, A. (2001). An excised in vitro leaf bioassay evaluates resistance of sweet cherry genotypes to Pseudomonas syringae pv. syringae. HortScience, 36, 610-611.Google Scholar
  85. Roos, I. M., & Hattingh, M. J. (1986a). Weeds in orchards as potential source of inoculum for bacterial canker of stone fruit. Phytophylactica, 18, 5-6.Google Scholar
  86. Roos, I. M., & Hattingh, M.J. (1986b). Pathogenic Pseudomonas spp. in stone fruit buds. Phytophylactica, 18, 7-9.Google Scholar
  87. Rosenberger, D. A. (1982). Biology and control of Cytospora fungi in peach plantings. New York: New York’s Food and Life Sciences, Bulletin 92.Google Scholar
  88. Schnabel, G., Bryson, P. K., Bridges, W.C., & Brannen, P.M. (2004). Reduced sensitivity in Monilinia fructicola to propiconazole in Georgia. Plant Disease, 88, 1000-1004.CrossRefGoogle Scholar
  89. Sholberg, P. L., & Ogawa, J. M. (1983). Relation of postharvest decay fungi to the slip-skin maceration disorder of dried French prunes. Phytopathology, 73, 708-713.Google Scholar
  90. Sholberg, P. L., & Gaunce, A. P. (1996). Fumigation of stonefruit with acetic acid to control postharvest decay. Crop Protection, 15, 681-684.CrossRefGoogle Scholar
  91. Sholberg, P. L., O’Gorman, D., & Bedford, K. (2005). Development of a DNA macroarray for detection and monitoring of economically important apple diseases. Plant Disease, 89, 1143-1150.CrossRefGoogle Scholar
  92. Snowdon, A. L. (1990). A color atlas of post-harvest disease and disorders of fruits and vegetables, Volume I. Boca Raton, FL: CRC Press.Google Scholar
  93. Sonoda, R. M., Ogawa, J. M., & Manji, B. T. (1982). Use of interactions of cultures to distinguish Monilinia laxa from M. fructicola. Plant Disease, 66, 325-326.Google Scholar
  94. Sonoda, R. M., Ogawa, J. M., Manji, B. T., Shabi, E., & Rough, D. (1983). Factors affecting control of blossom blight in peach orchard with low level benomyl-resistant Monilinia frujcticola. Plant Disease, 67, 681-684.CrossRefGoogle Scholar
  95. Southwick, S. M., & Ogawa, J. M. (1995). Plum and Prune. In: Ogawa J. M., Zehr E. I., Bird G. W., Ritchie D. F., Uriu K., & Uyemoto J. K. (Eds.), Compendium of Stone Fruit Diseases (pp. 3-4). St. Paul, MN: APS Press.Google Scholar
  96. Sundin, G. W., Jones, A. L., & Fulbright, D. W. (1989). Copper resistance in Pseudomonas syringae pv. syringae from cherry orchards and its associated transfer in vitro and in planta with a plasmid. Phytopathology, 79, 861-865.CrossRefGoogle Scholar
  97. Sutton, T. B. (1996). Changing options for the control of deciduous fruit tree diseases. Annual Review of Phytopathology, 34, 527-547.PubMedCrossRefGoogle Scholar
  98. Toivonen, P. M., Delaquis, P. J., Stan, S., & Stanich, K. (2004). The use of reflective tarps at harvest to improve postharvest quality of blueberries. Canadian Journal of Plant Science, 84, 873-875.Google Scholar
  99. Utkhede, R. S., & Sholberg, P. L. (1986). In vitro inhibition of plant pathogens by Bacillus subtilis and Enterobacter aerogenes and in vivo control of two postharvest cherry diseases. Canadian Journal of Microbiology, 32, 963-967.CrossRefGoogle Scholar
  100. Wade, G. C., & Cruickshank, R. H. (1992). Rapid development of resistance of wounds on immature apricot fruit to infection with Monilinia fructicola. Journal of Phytopathology, 136, 89-94.CrossRefGoogle Scholar
  101. Weaver, L. O. (1950). Effect of temperature and relative humidity on occurrence of blossom blight of stone fruits. Phytopathology, 40, 1136-1153.Google Scholar
  102. Weaver, D. J. (1978). Interaction of Pseudomonas syringae and freezing in bacterial canker on exiced peach twigs. Phytopathology, 68, 1460-1463.CrossRefGoogle Scholar
  103. Webster, A. D., & Looney, N. E. (1996). Cherries Crop Physiology, Production and Uses. Wallingford, Oxon, UK: CAB International.Google Scholar
  104. Westwood, M. N. (1993). Temperate-Zone Pomology Physiology and Culture. Third Edition. Portland, Oregon: Timber Press.Google Scholar
  105. Wittig, H. P., Johnson, K. B., & Pscheidt, J. W. (1997). Effect of epiphytic fungi on brown rot blossom blight and latent infections in sweet cherry. Plant Disease, 81, 383-387.CrossRefGoogle Scholar
  106. Yoshimura, M. A., Luo, Y., Ma, Z., & Michailides, T. J. (2004). Sensitivity of Monilinia fructicola from stone fruit to thiophanate-methyl, iprodione, and tebuconazole. Plant Disease, 83, 373-378.CrossRefGoogle Scholar
  107. Young, J. M. (1987). Orchard management and bacterial diseases of stone fruit. New Zealand Journal of Experimental Agriculture, 15, 257-266.Google Scholar
  108. Young, J. M. (1988). Pseudomonas syringae pv. persicae from nectarine, peach and Japanese plum in New Zealand. Bulletin OEPP/EPPO, 18, 141-151.Google Scholar
  109. Zehr, E. I., Luszcz, L. A., Olien, W. C., Newall, W. C., & Toler, J. E. (1999). Reduced sensitivity in Monilinia fructicola to propiconazole following prolonged exposure in peach orchards. Plant Disease, 83, 913-916.CrossRefGoogle Scholar
  110. Zhou, T., Northover, J., & Schneider, K. E. (1999). Biological control of postharvest diseases of peach with phyllosphere isolates of Pseudomonas syringae. Canadian Journal of Plant Pathology, 21, 375-381.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • A. Peter Sholberg
    • 1
  • Frank Kappel
    • 1
  1. 1.Agriculture and Agri-Food CanadaPacific Agri-Food Research CentreSummerlandBritish Columbia

Personalised recommendations