Advertisement

Integrated Management of Tomato Bacterial Spot

  • A. Obradovic
  • J.B. Jones
  • B. Balogh
  • M. T. Momol
Chapter
Part of the Integrated Management of Plant Pests and Diseases book series (IMPD, volume 3)

Abstract

Bacterial diseases of plants play an important role in the world’s agriculture by reducing yield and marketability of particular crops or by limiting their production in areas with environmental conditions conducive for disease development. Plant pathogenic bacteria present many obstacles in developing efficient plant protection practices. In spite of technological advances, there is no bactericide that can be efficiently used for control of plant bacterial diseases. Due to lack of adequate chemical based bactericides plant pathologists constantly search for alternatives and possibility for their integration with preventive measures in order to develop sustainable disease control strategy. Tomato bacterial spot management currently relies on use of pathogen-free seed and transplants, elimination of volunteer tomato plants, resistant cultivars, and frequent application of a copper-based bactericides. However, these practices are ineffective in regions where hot and humid weather favor spread of the pathogen and development of the disease. Novel technologies, such as application of systemic acquired resistance inducers and use of biocontrol agents integrated with conventional practices, represent new quality in plant protection and provide increase in efficiency of the disease management.

Keywords

Xanthomonas Campestris Avirulence Gene Bacterial Spot Integrate Disease Management Bacterial Speck 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbasi, P. A., Soltani, N., Cuppels, D. A., & Lazarovits, G. (2002). Reduction of bacterial spot disease severity on tomato and pepper plants with foliar applications of ammonium lignosulfonate and potassium phosphate. Plant Disease, 86,1232-1236.CrossRefGoogle Scholar
  2. Abbasi, P. A., Cuppels, D. A., & Lazarovits, G. (2003). Effect of foliar applications of neem oil and fish emulsion on bacterial spot and yield of tomatoes and peppers. Canadian Journal of Plant Pathology, 25, 41–48.Google Scholar
  3. Al-Dahmani, J. H., Abbasi, P. A., Miller, S. A., & Hoitink, H. A. J. (2003). Suppression of bacterial spot of tomato with foliar sprays of compost extracts under greenhouse and field conditions. Plant Disease, 87, 913-919.CrossRefGoogle Scholar
  4. Astua-Monge, G., Minsavage, G. V., Stall, R. E., Davis, M. J., Bonas, U., & Jones, J. B. (2000a). Resistance of tomato and pepper to T3 strains of Xanthomonas campestris pv. vesicatoria is specified by a plant-inducible avirulence gene. Molecular Plant-Microbe Interactions, 13, 911-921.CrossRefGoogle Scholar
  5. Astua-Monge, G., Minsavage, G. V., Stall, R. E., Vallejos, C. E., Davis, M. J., & Jones, J. B. (2000b). Xv4-avrXv4: A new gene-for-gene interaction identified between Xanthomonas campestris pv. vesicatoria race T3 and the wild tomato relative Lycopersicon pennellii Molecular Plant-Microbe Interactions, 13,1346-1355.Google Scholar
  6. Balogh, B., Jones, J. B., Momol, M. T., Olson, S. M., Obradovic, A., & Jackson, L. E. (2003). Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Disease, 87, 949-954.CrossRefGoogle Scholar
  7. Benhamou, N., & Belanger, R. R. (1998). Benzothiadiazole-mediated induced resistance to Fusarium oxysporum f. sp. radicis-lycopersici in tomato. Plant Physiology, 118, 1203-1212.PubMedCrossRefGoogle Scholar
  8. Bouzar, H., Jones, J. B., Stall, R. E., Hodge, N. C., Minsavage, G. V., Benedict, A. A., et al. (1994). Physiological, chemical, serological, and pathogenic analyses of a worldwide collection of Xanthomonas campestris pv. vesicatoria strains. Phytopathology, 84, 663-671.CrossRefGoogle Scholar
  9. Bouzar, H., Jones, J. B., Somodi, G. C., Stall, R. E., Daouzli, N., Lambe, R. C., et al. (1996). Diversity of Xanthomonas campestris pv. vesicatoria in tomato and pepper fields of Mexico. Canadian Journal of Plant Pathology, 18, 75-77.Google Scholar
  10. Bouzar, H., Jones, J. B., Stall, R. E., Louws, F. J., Schneider, M., Rademaker, J. L. W., et al. (1999). Multiphasic analysis of xanthomonads causing bacterial spot disease on tomato and pepper in the Caribbean and Central America: evidence for common lineages within and between countries. Phytopathology, 89, 328-335.CrossRefPubMedGoogle Scholar
  11. Byrne, J. M., Dianese, A. C., Ji, P., Campbell, H. L., Cuppels, D. A., Louws, F. J., et al. (2005). Biological control of bacterial spot of tomato under field conditions at several locations in North America. Biological Control, 32, 408–418.CrossRefGoogle Scholar
  12. Doidge, E. M. (1921). A tomato canker. Annals of Applied Biology, 7, 407-430.CrossRefGoogle Scholar
  13. Dye, D. (1962). The inadequacy of the usual determinative tests for the identification of Xanthomonas spp. New Zealand Journal of Science, 5, 393-416.Google Scholar
  14. Dye, D. W. (1966). Cultural and biochemical reaction of additional Xanthomonas species. New Zealand Journal of Science, 9, 913-919.Google Scholar
  15. Dye, D. W., Starr, M. P., & Stolp, H. (1964). Taxonomic clarification of Xanthomonas vesicatoria based upon host specificity, bacteriophage sensitivity, and cultural characteristics. Phytopathologische Zeitschrift, 51, 394-407.CrossRefGoogle Scholar
  16. Flaherty, J. E., Jones, J. B., Harbaugh, B. K., Somodi, G. C., Jackson, L. E. (2000). Control of bacterial spot on tomato in the greenhouse and field with h-mutant bacteriophages. Hort Science, 35, 882-884.Google Scholar
  17. Gardner, M. W., & Kendrick, J. B. (1921). Bacterial spot of tomato. Journal of Agricultural Research, 21, 123-156.Google Scholar
  18. Gardner, M. W., & Kendrick, J. B. (1923). Bacterial spot of tomato and pepper. Phytopathology, 13, 307-315.Google Scholar
  19. Hert, A. P., Roberts, P. D., Momol, M. T., Minsavage, G. V., Tudor-Nelson, S. M., & Jones, J. B. (2005). Relative Importance of Bacteriocin-Like Genes in Antagonism of Xanthomonas perforans Tomato Race 3 to Xanthomonas euvesicatoria Tomato Race 1 Strains. Applied Environmental Microbiology, 71, 3581-3588.CrossRefGoogle Scholar
  20. Jackson, L. E. (1989). Bacteriophage prevention and control of harmful plant bacteria. US Patent No. 4, 828, 999.Google Scholar
  21. Ji, P., Campbell, H. L., Kloepper, J. W., Jones, J. B., Suslow, T. V., & Wilson, M. (2006). Integrated biological control of bacterial speck and spot of tomato under field conditions using foliar biological control agents and plant growth-promoting rhizobacteria. Biological Control, 36, 358-367.CrossRefGoogle Scholar
  22. Jones, J.B., & Jones J.P. (1985). The effect of bactericides, tank mixing time, and spray schedule on bacterial leaf spot of tomato. Proceedings of the Florida State Horticultural Society, 98, 244-247.Google Scholar
  23. Jones, J. B., & Scott, J. W. (1986). Hypersensitive response in tomato to Xanthomonas campestris pv.vesicatoria. Plant Disease, 70, 337-339.CrossRefGoogle Scholar
  24. Jones, J. B., Pohronezny, K. L., Stall, R. E., Jones, J. P. (1986). Survival of Xanthomonas campestris pv. vesicatoria on tomato crop residue, weeds, seeds, and volunteer tomato plants. Phytopathology, 76, 430-434.CrossRefGoogle Scholar
  25. Jones, J. B., Jones, J. P., Stall, R. E., & Zitter, T. A. (1991a). Compendium of tomato diseases. Americal Phytopathological Society Press. St. Paul, MN, 100 pp.Google Scholar
  26. Jones, J. B., Woltz, S. S., Jones, J. P., & Portier, K. L. (1991b). Population dynamics of Xanthomonas campestris pv. vesicatoria on tomato leaflets treated with copper bactericides. Phytopathology, 81, 714-719.CrossRefGoogle Scholar
  27. Jones, J. B., Stall, R. E., Somodi, G. C., Bouzar, H., & Hodge, N. C. (1995). A third tomato race of Xanthomonas campestris pv. vesicatoria. Plant Disease,79, 395-398.Google Scholar
  28. Jones, J. B., Bouzar, H., Somodi, G. C., Stall, R. E., Pernezny, K., El-Morsy, G., et al (1998). Evidence for the preemptive nature of tomato race 3 of Xanthomonas campestris pv. vesicatoria in Florida. Phytopathology, 88, 33-38.CrossRefPubMedGoogle Scholar
  29. Jones, J. B., Bouzar, H., Stall, R. E., Almira, E.C., Roberts, P., Bowen, B.W., et al. (2000). Systematic analysis of xanthomonads Xanthomonas spp. associated with pepper and tomato lesions. International Journal of Systematic Bacteriology, 50, 1211-1219.Google Scholar
  30. Jones, J. B., Lacy, G. H., Bouzar, H., Stall, R. E., & Schaad, N. W. (2004). Reclassification of the xanthomonads Associated with bacterial spot disease of tomato and pepper. Systematic & Applied Microbiology, 27, 755-762.CrossRefGoogle Scholar
  31. Laub, C. A., & Stall, R. E. (1967). An evaluation of Solanum nigrum and Physalis minima as suscepts of Xanthomonas vesicatoria. Plant Disease Reporter, 51, 659-661.Google Scholar
  32. Louws, E. J., Wilson, M., Cambell, H. L., Cuppels, D. A., Jones, J. B., Shoemaker, P. B., et al. (2001). Field control of bacterial spot and bacterial speck of tomato using a plant activator. Plant Disease, 85, 481-488.CrossRefGoogle Scholar
  33. Marco, G. M., & Stall, R. E. (1983). Control of bacterial spot of pepper initiated by strains of Xanthomonas campestris pv. vesicatoria that differ in sensitivity to copper. Plant Disease, 67, 779-781.CrossRefGoogle Scholar
  34. Martin, H. L., Hamilton, V. A., & Kopittke, R. A. (2004). Copper tolerance in Australian populations of Xanthomonas campestris pv. vesicatoria contributes to poor field control of bacterial spot of pepper. Plant Disease, 88, 921-924.CrossRefGoogle Scholar
  35. McManus, P. S., Stockwell, V. O., Sundin, G. W., & Jones, A. L. (2002). Antibiotic use in plant agriculture. Annual Review of Phytopathology, 40, 443-65.PubMedCrossRefGoogle Scholar
  36. Minsavage, G. V., Canteros, B. I., & Stall, R. E. (1990). Plasmid-mediated resistance to streptomycin in Xanthomonas campestris pv. vesicatoria. Phytopathology, 80, 719–723.CrossRefGoogle Scholar
  37. Minsavage, G. V., Jones, J. B., & Stall, R. E. (1996). Cloning and sequencing of an avirulence gene (avrRxv3) isolated from Xanthomonas campestris pv. vesicatoria tomato race 3. Phytopathology, 86, S15.Google Scholar
  38. Minsavage, G. V., Balogh, B., Stall, R. E., & Jones, J. B. (2003). New tomato races of Xanthomonas campestris pv. vesicatoria associated with mutagenesis of tomato race 3 strains. Phytopathology, 93, S62.Google Scholar
  39. Momol, M. T., Jones, J. B., Olson, S., Obradovic, A., Balogh, B., & King, P. (2002). Integrated management of bacterial spot on tomato in Florida. Fact Sheet PP110, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. EDIS Web site: http://edis.ifas.ufl.edu.
  40. Momol, M. T., Olson, S. M., Funderburk, J. E., & Marois, J. J. (2003). Integrated management of tomato spotted wilt on tomato. Phytopathology, 93, S115.Google Scholar
  41. Momol, M. T., & Pernezny, K. (2005). Tomato. PDMG-V3-53, 2006. Florida Plant Disease Management Guide, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. EDIS Web site: http://edis.ifas.ufl.edu.
  42. Obradovic, A., Jones, J. B., Momol, M. T., Balogh, B., & Olson, S. M. (2004a). Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Disease, 88, 736-740.CrossRefGoogle Scholar
  43. Obradovic, A., Mavridis, A., Rudolph, K., Janse, J., Arsenijevic, M., Jones, J. B., Minsavage, G. V., & Wang, J. F. (2004b). Characterization and PCR-based typing of Xanthomonas campestris pv. vesicatoria pepper and tomato pathogen in Serbia. European Journal of Plant Pathology, 110, 285-292.CrossRefGoogle Scholar
  44. Obradovic, A., Jones, J. B., Momol, M. T., Olson, S. M., Jackson, L. E., Balogh, B., et al. (2005). Integration of biological control agents and systemic acquired resistance inducers against bacterial spot on tomato. Plant Disease, 89, 712-716.CrossRefGoogle Scholar
  45. Quezado-Duval, A. M., Leite, R. P., Jr., Truffi, D., & Camargo, L. E. A. (2004). Outbreaks of bacterial spot caused by Xanthomonas gardneri on processing tomato in central-west Brazil. Plant Disease, 88, 157-161.CrossRefGoogle Scholar
  46. Qui, D., Wei, Z. M., Bauer, D. W., & Beer, S. V. (1997). Treatment of tomato seed with harpin enhances germination and growth and induces resistance to Ralstonia solanacearum. Phytopathology, 87, S80.Google Scholar
  47. Ritchie, D. F., & Dittapongpitch, V. (1991). Copper- and streptomycin-resistant strains and host differentiated races of Xanthomonas campestris pv. vesicatoria in North Carolina. Plant Disease, 75, 733-736.Google Scholar
  48. Somodi, G. C., Jones, J. B., & Jackson, L. E. (1997). Control of bacterial spot of tomato in transplant production using mutant bacteriophage and a hrp-strain of Xanthomonas campestris pv. vesicatoria. Phytopathology, 87, S92.Google Scholar
  49. Stall, R. E., Beaulieu, C., Egel, D., Hodge, N. C., Leite, R. P., Minsavage, G. V., et al. (1994). Two genetically diverse groups of strains are included in Xanthomonas campestris pv. vesicatoria. International Journal of Systematic Bacteriology, 44, 47-53.Google Scholar
  50. Sutic, D. (1957). Bakterioze crvenog patlidzana (Tomato bacteriosis). Posebna Izd. Inst. Zast. Bilja Beograd (Special Edition Institute of Plant Protection, Belgrade), 6: 1-65. English summary: Review of Applied Mycology, 36, 734-735.Google Scholar
  51. Thayer, P. L., & Stall, R. E. (1961). A survey of Xanthomonas vesicatoria resistance to streptomycin. Proceedings of the Florida State Horticultural Society, 75, 163-165.Google Scholar
  52. Tudor-Nelson, S. M, Minsavage, G. V., Stall, R. E., & Jones, J. B. (2003). Bacteriocin-Like Substances from Tomato Race 3 Strains of Xanthomonas campestris pv. vesicatoria. Phytopathology, 93, 1415-1421.CrossRefGoogle Scholar
  53. Vauterin, L., Hoste, B., Kersters, K., & Swings, J. (1995). Reclassification of Xanthomonas. International Journal of Systematic Bacteriology, 45, 472-489.CrossRefGoogle Scholar
  54. Vauterin, L., Hoste, B., Yang, P., Alvarez, A., Kersters, K., & Swings, J. (1993). Taxonomy of the genus Xanthomonas. In: Xanthomonas. Swings, J. G., & Civerolo, E. L. (Eds). Chapman and Hall, London, 156-192.Google Scholar
  55. Whalen, M. C., Wang, J-F, Garland, F. M., Heiskell, M. E., Dahlbeck, D., Minsavage, G. V., et al. (1993). Avirulence gene avrRxv from Xanthomonas campestris pv. vesicatoria specifies resistance on tomato line Hawaii 7998. Molecular Plant-Microbe Interactions, 6, 616-627.PubMedGoogle Scholar
  56. Wilson, M., Campbell, H. L., Ji, P., Jones, J. B., & Cuppels, D. A. (2002). Biological control of bacterial speck of tomato under field conditions at several locations in North America. Phytopathology, 92, 1284-1292.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • A. Obradovic
    • 1
  • J.B. Jones
    • 1
  • B. Balogh
    • 1
  • M. T. Momol
    • 1
  1. 1.Plant Pathology Department Institute of Food and Agricultural SciencesUniversity of FloridaUSA

Personalised recommendations