Advertisement

New Progress in the Integrated Management of Sclerotinia Rot of Carrot

  • Cezarina Kora
  • Mary Ruth McDonald
  • Greg J. Boland
Chapter
Part of the Integrated Management of Plant Pests and Diseases book series (IMPD, volume 3)

Abstract

Sclerotinia rot, caused by the pathogenic fungus Sclerotinia sclerotiorum (Lib.) de Bary, is an economically important disease of carrot (Daucus carota L.) occurring in the field and storage. This review describes a range of control methods for Sclerotinia rot of carrot, emphasizing emerging strategies supported by new information on the etiology and epidemiology of the disease. Prospects and recommendations are outlined for integrating current and emerging control methods to attain sustainable management of the disease. The primary strategy to managing Sclerotinia rot is the integration of methods that reduce within-field sources of inoculum, suppress the development of S. sclerotiorum, and reduce the infection rate in the field and storage. The integrated strategy recommended in this review aims at achieving disease suppression through sanitation of soil and equipment, monitoring the crop development and microclimate, modifying the microclimate through canopy manipulation, predicting the disease, and timing the application of disease control practices as required. Breeding carrot cultivars for an upright and compact top growth may offer important contributions to the sustainable management of Sclerotinia rot.

Keywords

Sclerotinia Sclerotiorum Carrot Root Soil Matric Potential Postharvest Disease White Mold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abawi, G. S., & Grogan, R. G. (1979). Epidemiology of diseases caused by Sclerotinia species. Phytopathology, 69, 899-904.Google Scholar
  2. Adams, P. B., & Ayres, W. A. (1979). Ecology of Sclerotinia species. Phytopathology, 69, 896-899.Google Scholar
  3. Afek, U., Orenstein, J., & Nuriel, E. (1999). Steam treatment to prevent carrot decay during storage. Crop Protection, 18, 639-642.Google Scholar
  4. Alexander, B. J. R., & Stewart, A. (1994). Survival of sclerotia of Sclerotinia and Sclerotium spp. in New Zealand horticultural soil. Soil Biology and Biochemistry, 26, 1323-1329.Google Scholar
  5. Anonymous. (1970). Carrot. Canadian Plant Disease Survey, 50, 20.Google Scholar
  6. Anonymous. (2001). Carrots. In, “Vegetable Production Guide for Commercial Growers, 2001/2002 Edition”. British Columbia Ministry of Agriculture, Food and Fisheries, BC, Canada, pp. 71-77.Google Scholar
  7. Anonymous. (2003). Commercial biocontrol products available for use against plant pathogens, APS Biological Control Committee. On-line publication, updated August 19, 2003.Google Scholar
  8. Anonymous. (2004a). 2003 FAO Production Yearbook, Vol.57. FAO, Rome, Italy.Google Scholar
  9. Anonymous. (2004b). Carrots. In, “Vegetable Production Recommendations, 2004-2005, Publication 363”. Ontario Ministry of Agriculture and Food, ON, Canada, pp. 70-73.Google Scholar
  10. Arneson, P. A. (2001). Plant disease epidemiology. In, “The Plant Health Instructor”. On-line publication, APS, St. Paul, Minnesota.Google Scholar
  11. Atallah, Z. K., & Johnson, D. A. (2004). Development of Sclerotinia stem rot in potato fields in south-central Washington. Plant Disease, 88, 419-423.Google Scholar
  12. Barton, W., & Chapman, S. R. (2002). BAS 510 F: A new broad-spectrum fungicide for use on fruit and vegetable crops and turfgrass. Canadian Journal of Plant Pathology, 24, 381.Google Scholar
  13. Bennett, A. J., Leifert, C., & Whipps, J. M. (2003). Survival of the biocontrol agentsConiothyrium minitans and Bacillus subtilis MBI 600 introduced into pasteurised, sterilised and non-sterile soils. Soil Biology & Biochemistry, 35, 1565-1573.Google Scholar
  14. Ben-Yephet, Y. (1988). Control of sclerotia and apothecia of Sclerotinia sclerotiorum by metham-sodium, methyl bromide and soil solarization. Crop Protection, 7, 25-27.Google Scholar
  15. Ben-Yephet, Y., Bitton, S., & Greenberger, A. (1986). Control of lettuce drop disease, caused by Sclerotinia sclerotiorum, with metham-sodium soil treatment and foliar application of benomyl. Plant Pathology, 35, 146-151.Google Scholar
  16. Ben-Yephet, Y., Genizi, A., & Siti, E. (1993). Sclerotial survival and apothecial production by Sclerotinia sclerotiorum following outbreaks of lettuce drop. Phytopathology, 83, 509-513.Google Scholar
  17. Blad, B. L., Steadman, J. R., & Weiss, A. (1978). Canopy structure and irrigation influence white mold disease and microclimate of dry edible beans. Phytopathology, 68, 1431-1437.Google Scholar
  18. Boland, G. J., & Hall, R. (1987a). Epidemiology of white mold of white bean in Ontario. Canadian Journal of Plant Pathology, 9, 218-224.Google Scholar
  19. Boland, G. J., & Hall, R. (1987b). Evaluating soybean cultivars for resistance to Sclerotinia sclerotiorum under field conditions. Plant Disease, 71, 934-936.Google Scholar
  20. Boland, G. J., & Hall, R. (1988). Epidemiology of Sclerotinia stem rot of soybean in Ontario. Phytopathology, 78, 1241-1245.Google Scholar
  21. Boland, G. J., & Hall, R. (1994). Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 16, 93-108.Google Scholar
  22. Bom, M., & Boland, G. J. (2000). Evaluation of disease forecasting variables for sclerotinia stem rot (Sclerotinia sclerotiorum) of canola. Canadian Journal of Plant Science, 80, 889-898.Google Scholar
  23. Budge, S. P., McQuilken, M. P., Fenlon, J. S., & Whipps, J. M. (1995). Use of Coniothyrium minitans and Gliocladium virens for biological control of Sclerotinia sclerotiorum in glasshouse lettuce. Biological Control, 5, 513-522.Google Scholar
  24. Butzler, T. M., Bailey, J., & Beute, M. K. (1998). Integrated management of Sclerotinia blight in peanut: utilizing canopy morphology, mechanical pruning, and fungicide timing. Plant Disease, 82, 1312-1318.Google Scholar
  25. Caesar, A. J., & Pearson, R. C. (1983). Environmental factors affecting survival of ascospores of Sclerotinia sclerotiorum. Phytopathology, 73, 1024-1030.Google Scholar
  26. Cheah, L. H., Page, B. B. C., & Shepherd, R. (1997). Chitosan coating for inhibition of sclerotinia rot of carrot. New Zealand Journal of Crop and Horticultural Science, 25, 89-92.Google Scholar
  27. Cheah, L. H., & Brash, D. W. (2001). Minimizing postharvest rots and quality loss in New Zealand carrots. In, Crop Management and Postharvest Handling of Horticultural Products. Volume 1 - Quality Management. Dris, R., Niskanen, R., & Jain, S. M. (Eds.). Science Publishers, Inc., Enfield, New Hampshire, USA, 327-344.Google Scholar
  28. Clarkson, J. P., Phelps, K., Whipps, J. M., Young, C. S., Smith, J. A., & Watling, M. (2004). Forecasting Sclerotinia disease on lettuce: Toward developing a prediction model for carpogenic germination of sclerotia. Phytopathology, 94, 268-279.Google Scholar
  29. Coley-Smith, J. R., & Cooke, R.C. (1971). Survival and germination of fungal sclerotia. Annual Review of Phytopathology, 9, 65-92.Google Scholar
  30. Cook, G. E., Steadman, J. R., & Boosalis, M. G. (1975). Survival of Whetzelinia sclerotiorum and initial infection of dry edible beans in western Nebraska. Phytopathology, 65, 250-255.Google Scholar
  31. Couper, G. (2001). The biology, epidemiology and control ofSclerotinia sclerotiorum on carrots in North East Scotland. Ph.D. Thesis, University of Aberdeen, Aberdeen, Scotland, UK.Google Scholar
  32. Couper, G., Litterick, A., & Leifert, C. (2001). Control of Sclerotinia within carrot crops in NE Scotland: the effect of irrigation and compost application on sclerotia germination. In: Proceedings of the 11th International Sclerotinia Workshop. Young, C. & Hughes, K. (Eds.). York, UK, 129-130.Google Scholar
  33. Davis, R. M. (2004). Carrot diseases and their management. In: Diseases of Fruits and Vegetables. Volume 1. Naqvi, S. A. M. H. (Ed. ). Kluwer Academic Publishers, The Netherlands, 397-439.Google Scholar
  34. Del Rio, L. E., Martinson, C. A., & Yang, X. B. (2002). Biological control of Sclerotinia stem rot of soybean with Sporidesmium sclerotivorum. Plant Disease, 86, 999-1004.Google Scholar
  35. Deshpande, R. Y., Hubbard, K. G., Coyne, D. P., Steadman, J. R., & Parkhurst, A. M. (1995). Estimating leaf wetness in dry bean canopies as a prerequisite to evaluating white mold disease. Agronomy Journal, 87, 613-619.Google Scholar
  36. Dillard, H. R., & Hunter, J. E. (1986). Association of common ragweed with Sclerotinia rot of cabbage in New York state. Plant Disease, 70, 26-28.Google Scholar
  37. Dillard, H. R., Ludwig, J. W., & Hunter, J. E. (1995). Conditioning sclerotia of Sclerotinia sclerotiorum for carpogenic germination. Plant Disease, 79, 411-415.Google Scholar
  38. Doran, J. W. (1980a). Microbial changes associated with residue management and reduced tillage. Soil Science Society of America Journal, 44, 518-524.Google Scholar
  39. Doran, J. W. (1980b). Soil microbial and biochemical changes associated with reduced tillage. Soil Science Society of America Journal, 44, 765-771.Google Scholar
  40. Dos Santos, A. F., & Dhingra, O. D. (1982). Pathogenicity of Trichoderma spp. on the sclerotia of Sclerotinia sclerotiorum. Canadian Journal of Botany, 60, 472-475.Google Scholar
  41. El Ghaouth, A. (1994). Manipulation of defense systems with elicitors to control postharvest diseases. In: Biological Control of Postharvest Diseases - Theory and Practice. Wilson, C. L., & Wisniewski, M. E. (Eds.). CRC Press, Inc., Boca Raton, FL, 153-167.Google Scholar
  42. Elad, Y. (2000). Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection, 19, 709-714.Google Scholar
  43. Ferraz, L. C. L., Café Filho, A. C., Nasser, L. C. B., & Azevedo, J. (1999). Effects of soil moisture, organic matter and grass mulching on the carpogenic germination of sclerotia and infection of bean by Sclerotinia sclerotiorum. Plant Pathology, 48, 77-82.Google Scholar
  44. Finlayson, J. E., Pritchard, M. K., & Rimmer, S. R. (1989). Electrolyte leakage and storage decay of five carrot cultivars in response to infection by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 11, 313-316.Google Scholar
  45. Finlayson, J. E., Rimmer, S. R., & Pritchard, M. K. (1989). Infection of carrots by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 11, 242-246.Google Scholar
  46. Fraser, H. (1998). Tunnel forced-air coolers for fresh fruits & vegetables. FACTSHEET Agdex n. 736/202. Ontario Ministry of Agriculture and Food, ON, Canada.Google Scholar
  47. Fuller, P. A., Steadman, J. R., & Coyne, D. P. (1984). Enhancement of white mold avoidance in dry beans by canopy elevation. HortScience, 19, 78-79.Google Scholar
  48. Geary, J. R. (1978). Host-parasite interactions between the cultivated carrot (Daucus carota L.) and Sclerotinia sclerotiorum (Lib.) de Bary. Ph.D. Thesis, University of East Anglia, East Anglia, UK.Google Scholar
  49. Geeson, J. D., Browne, K. M., & Everson, H. P. (1988). Storage diseases of carrots in East-Anglia 1978-82, and the effects of some pre- and post-harvest factors. Annals of Applied Biology, 112, 503-514.Google Scholar
  50. Gerlagh, M., Goossen-van de Geijn, H. M., Fokkema, N. J. & Vereijken, P. F. G. (1999). Long-term biosanitation by application of Coniothyrium minitans on Sclerotinia sclerotiorum-infected crops. Phytopathology, 89, 141-147.Google Scholar
  51. Gerlagh, M., Goossen-Van De Geijn, H. M., Hoogland, A. E. & Vereijken, P. F. G. (2003). Quantitative aspects of infection of Sclerotinia sclerotiorum sclerotia by Coniothyrium minitans: Timing of application, concentration and quality of conidial suspension of the mycoparasite. European Journal of Plant Pathology, 109, 489-502.Google Scholar
  52. Gotoechan, H. & Desilets, H. (1999). Post-harvest effects of two AM fungi on white rot (Sclerotinia sclerotiorum) in carrot (Daucus carota L.). Phytopathology, 89 S29 (abstract).Google Scholar
  53. Gracia-Garza, J. A., Bailey, B. A., Paulitz, T. C., Lumsden, R. D., Reeleder, R. D., & Roberts, D. P. (1997). Effect of sclerotial damage of Sclerotinia sclerotiorum on the mycoparasitic activity of Trichoderma harzianum. Biocontrol Science and Technology, 7, 401-413.Google Scholar
  54. Gracia-Garza, J. A., Neumann, S., Vyn, T. J., & Boland, G. J. (2002). Influence of crop rotation and tillage on production of apothecia by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 24, 137-143.Google Scholar
  55. Gullino, M. L., Camponogara, A., Gasparrini, G., Rizzo, V., Clini, C., & Garibaldi, A. (2003). Replacing methyl bromide for soil disinfestation: The Italian experience and implications for other countries. Plant Disease, 87, 1012-1021.Google Scholar
  56. Hansen, J. M., Tobias, D. J., Balbyshev, N. F., Stack, R. W. & Lee, C. W. (2001). Effect of preharvest benomyl spray on winter storage of carrots. Phytopathology, 91, S178 (abstract).Google Scholar
  57. Hoadley, A. D. (1963). Control of carrot storage disease organisms with sodium orthophenylphenate. Plant Disease Reporter, 47, 900-903.Google Scholar
  58. Huang, H. C. (1977). Importance of Coniothyrium minitans in survival of sclerotia of Sclerotinia sclerotiorum in wilted sunflower. Canadian Journal of Botany, 55, 289-295.Google Scholar
  59. Huang, H. C., & Sun, S. K. (1991). Effects of S-H mixture or Perlka on carpogenic germination and survival of sclerotia of Sclerotinia sclerotiorum. Soil Biology and Biochemistry, 23, 809-813.Google Scholar
  60. Huang, H. C., Huang, J. W., Snaidon, G. & Erickson, R. S. (1997). Effect of allyl alcohol and fermented agricultural wastes on carpogenic germination of sclerotia of Sclerotinia sclerotiorum and colonization by Trichoderma spp. Canadian Journal of Plant Pathology, 19, 43-46.Google Scholar
  61. Huang, H. C., Bremer, E., Hynes, R. K., & Erickson, R. S. (2000). Foliar application of fungal biocontrol agents for the control of white mold of dry bean caused bySclerotinia sclerotiorum. Biological Control, 18, 270-276.Google Scholar
  62. Huang, H. C., Mundel, H. H., & Erickson, R. S. (2003). Effect of physiological resistance and plant architecture on yield of dry bean under disease pressure of white mold (Sclerotinia sclerotiorum). Plant Protection Bulletin (Taichung), 45,169-176.Google Scholar
  63. Hunter, J. E. (1981). Proposal for a forecasting system for white mold of snap bean. Report of Bean Improvement Cooperative, 24, 122-123.Google Scholar
  64. Hunter, J. E., Abawi, G. S., & Crosier, D. C. (1978). Effects of timing, coverage, and spray oil on control of white mold of snap bean with benomyl. Plant Disease Reporter, 62, 633-637.Google Scholar
  65. Hunter, J. E., Pearson, R. C., Seem, R. C., Smith, C. A., & Palumbo, D. R. (1984). Relationship between soil moisture and occurrence of Sclerotinia sclerotiorum and white mold disease on snap beans. Protection Ecology, 7, 269-280.Google Scholar
  66. Inbar, J., Menendez, A., & Chet, I. (1996). Hyphal interaction between Trichoderma harzianum and Sclerotinia sclerotiorum and its role in biological control. Soil Biology and Biochemistry, 28, 757-763.Google Scholar
  67. Jurke, C. J., & Fernando, W. G. D. (2002). The effects of plant architecture in canola on sclerotinia stem rot (Sclerotinia sclerotiorum) avoidance. Phytopathology, 92, S40 (abstract).Google Scholar
  68. Jurke, C. J., & Fernando, W. G. D.( 2003). Effect of seeding rates on infection of Sclerotinia sclerotiorum in canola. Canadian Journal of Plant Pathology, 25, 117.Google Scholar
  69. Kim, H. S., & Diers, B. W. (2000). Inheritance of partial resistance to sclerotinia stem rot in soybean. Crop Science, 40, 55-61.Google Scholar
  70. Kolkman, J. M., & Kelly, J. D. (2003). QTL conferring resistance and avoidance to white mold in common bean. Crop Science, 43, 539-548.Google Scholar
  71. Kora, C. (2003). Etiology, epidemiology, and management of Sclerotinia rot of carrot caused by Sclerotinia sclerotiorum (Lib.) de Bary. Ph.D. Thesis, University of Guelph, Guelph, ON, Canada.Google Scholar
  72. Kora, C., Boland, G. J., & McDonald, M. R. (2002). First report of foliar and root infection of carrot by Sclerotinia minor in Ontario, Canada. Plant Disease, 86, 1406.Google Scholar
  73. Kora, C., McDonald, M. R. & Boland, G. J. (2003). Sclerotinia rot of carrot: An example of phenological adaptation and bicyclic development of Sclerotinia sclerotiorum. Plant Disease, 87, 456-470.Google Scholar
  74. Kora, C., McDonald, M. R. & Boland, G. J. (2005a). Lateral clipping of canopy influences the microclimate and development of apothecia of Sclerotinia sclerotiorum in carrots. Plant Disease, 6, 549-557Google Scholar
  75. Kora, C., McDonald, M. R. & Boland, G. J. (2005b). Epidemiology of sclerotinia rot of carrot caused by Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 27, 245-258.Google Scholar
  76. Le Cam, B., Rouxel, F., & Villeneuve, F. (1993). Analyse de la flore fongique de la carrote conservée au froid: Prépondérance de Mycocentrospora acerina (Hartig) Deighton. Agronomie, 13, 125-133.Google Scholar
  77. Lee, C. W., Cho, K. H., Cihacek, L. J., & Stack, R. W. (2000). Influence of foliar application of calcium nitrate on carrot root tissue electrolyte leakage and storage characteristics. HortScience, 35, 453 (abstract).Google Scholar
  78. Lewis, B. G., & Garrod, B. (1983). Carrots. In: Post-harvest pathology of fruits and vegetables, Dennis C. (Ed.) (pp. 103-124). London, UK: Academic Press.Google Scholar
  79. Liew, C. L., & Prange, R. K. (1994). Effect of ozone and storage temperature on postharvest diseases and physiology of carrots (Daucus carota L.). Journal of the American Society for Horticultural Science, 119, 563-567.Google Scholar
  80. Lockhart, C. L., & Delbridge, R. W. (1972). Control of storage diseases of carrots by washing, grading, and postharvest fungicide treatments. Canadian Plant Disease Survey, 52, 140-142.Google Scholar
  81. Lumsden, R. D. (1979). Histology and physiology of pathogenesis in plant diseases caused by Sclerotinia species. Phytopathology, 69, 890-896.Google Scholar
  82. Martinson, C. A., & Del Rio, L. E. (2001). Prolonged control of Sclerotinia sclerotiorum with Sporidesmium sclerotivorum. In, “Proceedings of the 11th International Sclerotinia Workshop”, (eds. Young, C. and Hughes, K).York, UK, 133-134.Google Scholar
  83. McDonald, M. R. (1994). Sclerotinia rot (white mold) of carrot. In, “Diseases and Pests of Vegetable Crop in Canada”, (eds. Howard, H. J., Garland, J. A. and Seaman, W. L.). The Canadian Phytopathological Society and Entomological Society of Canada, Ottawa, Canada, pp. 72-73.Google Scholar
  84. McLaren, D. L., Huang, H. C., & Rimmer, S. R. (1996). Control of apothecial production of Sclerotinia sclerotiorum by Coniothyrium minitans and Talaromyces flavus. Plant Disease, 80, 1373-1378.Google Scholar
  85. McLean, D. M. (1958). Role of dead flower parts in infection of certain crucifers by Sclerotinia sclerotiorum (Lib.) de Bary. Plant Disease Reporter, 42, 663-666.Google Scholar
  86. McQuilken, M. P., Mitchel, S. J., Budge, S. P., Whipps, J. M., Fenlon, J. S. & Archer, S. A. (1995). Effect of Coniothyrium minitans on sclerotial survival and apothecial production of Sclerotinia sclerotiorum in field-grown oilseed rape. Plant Pathology, 44: 883-896.Google Scholar
  87. Melzer, M. S., Smith, E. A., & Boland, G. J. (1997). Index of plant hosts of Sclerotinia minor. Canadian Journal of Plant Pathology, 19, 272-280.Google Scholar
  88. Mercier, J., Arul, J., Ponnampalam, R., & Boulet, M. (1993). Induction of 6-Methoxymellein and resistance to storage pathogens in carrot slices by UV-C. Journal of Phytopathology, 137, 44-54.Google Scholar
  89. Merriman, P. R., Pywell, M., Harrison, G., & Nancarrow, J. (1979). Survival of sclerotia of Sclerotinia sclerotiorum and effects of cultivation practices on disease. Soil Biology and Biochemistry, 11, 567-570.Google Scholar
  90. Miklas, P. N., Johnson, W. C., Delorme, R., & Gepts, P. (2001). QTL conditioning physiological resistance and avoidance to white mold in dry bean. Crop Science, 41, 309-315.Google Scholar
  91. Miklas, P. N., Delorme, R., & Riley, R. (2003). Identification of QTL conditioning resistance to white mold in snap bean. Journal of the American Society for Horticultural Science, 128, 564-570.Google Scholar
  92. Molloy, C., Cheah, L. H., & Koolaard, J. P. (2004). Induced resistance against Sclerotinia sclerotiorum in carrots treated with enzymatically hydrolysed chitosan. Postharvest Biology and Technology, 33, 61-65.Google Scholar
  93. Moore, W. D. (1949). Flooding as a means of destroying sclerotia of Sclerotinia sclerotiorum. Phytopathology, 39, 920-927.Google Scholar
  94. Morrall, R. A. A., & Dueck, J. (1982). Epidemiology of Sclerotinia stem rot of rapeseed in Saskatchewan. Canadian Journal of Plant Pathology, 4, 161-168.Google Scholar
  95. Mukula, J. (1957). On the decay of stored carrots in Finland. Acta Agriculturae Scandinavica, Suppl. 2.Google Scholar
  96. Olsson, K., & Svensson, R. (1996). The influence of polyacetylenes on the susceptibility of carrots to storage diseases. Journal of Phytopathology, 144, 441-447.Google Scholar
  97. Park, S. J. (1993). Response of bush and upright plant type selections to white mold and seed yield of common beans grown in various row widths in southern Ontario. Canadian Journal of Plant Science, 73, 265-272.Google Scholar
  98. Phan, C. T., & Hsu, H. (1973). Physical and chemical changes occurring in the carrot root during storage. Canadian Journal of Plant Science, 53, 629-634.Google Scholar
  99. Phillips, A. J. L. (1987). Carpogenic germination of sclerotia ofSclerotinia sclerotiorum: A review. Phytophylactica, 19, 279-283.Google Scholar
  100. Phillips, A. J. L. (1990). The effects of soil solarization on sclerotial populations of Sclerotinia sclerotiorum. Plant Pathology, 39, 38-43.Google Scholar
  101. Pratt, R. G. (1991). Evaluation of foliar clipping treatments for cultural control of Sclerotinia crown and stem rot in crimson clover. Plant Disease, 75, 59-62.Google Scholar
  102. Pritchard, M. K., Boese, D. E. & Rimmer, S. R. (1992). Rapid cooling and field-applied fungicides for reducing losses in stored carrots caused by cottony soft rot. Canadian Journal of Plant Pathology, 14, 177-181.Google Scholar
  103. Punja, Z. K., Chen, W. P., & Yip, R. (2003). Transgenic carrots expressing a thaumatin-like protein display enhanced tolerance to several fungal pathogens. Canadian Journal of Plant Pathology, 25, 112 (abstract).Google Scholar
  104. Purdy, L. H. (1979). Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact. Phytopathology, 69, 875-880.Google Scholar
  105. Rader, W. E. (1952). Diseases of stored carrots in New York State. New York Agricultural Experiment Station Geneva Bulletin, No. 889, 10-14.Google Scholar
  106. Reeleder, R. D., Raghavan, G. S. V., Monette, S., & Gariepy, Y. (1989). Use of modified atmospheres to control storage rot of carrot caused by Sclerotinia sclerotiorum. International Journal of Refrigeration, 12, 159-163.Google Scholar
  107. Rousseau, G., Rioux, S., & Dostaler, D. (2003). Assessment of soil or compost suppressiveness to Sclerotinia sclerotiorum under growth chamber condition: Correlations with laboratory and field assessments. Canadian Journal of Plant Pathology, 25, 434 (abstract).Google Scholar
  108. Rubatzky, V. E., Quiros, C. F., & Simon, P.W. (1999). Carrots and Related Vegetable Umbelliferae. CABI Publishing, New York, 294 pp.Google Scholar
  109. Saindon, G., Huang, H. C., Kozub, G. C., Mundel, H. H., & Kemp, G. A. (1993). Incidence of white mold and yield of upright bean grown in different planting patterns. Journal of Phytopathology, 137, 118-124.Google Scholar
  110. Salunkhe, D. K., & Desai, B .B. (1984). Postharvest Biotechnology of Vegetables. CRC Press, Inc., Boca Raton, FL, 208p.Google Scholar
  111. Sanderson, K.R. & Peters, R.D. (2008). Side trimming carrot canopies expected to become the standard practice. Carrot Country, Summer 2008 issue, © 2008 Columbia Publishing.Google Scholar
  112. Schwartz, H. F., & Steadman, J. R. (1978). Factors affecting sclerotia populations of, and apothecium production by Sclerotinia sclerotiorum. Phytopathology, 68, 383-388.Google Scholar
  113. Schwartz, H. F., Steadman, J. R., & Coyne, D.P. (1978). Influence of Phaseolus vulgaris blossoming characteristics and canopy structure upon resistance to Sclerotinia sclerotiorum. Phytopathology, 68, 465-470.Google Scholar
  114. Shibairo, S. I., Upadhyaya, M. K., & Toivonen, P. M. A. (1998a). Influence of preharvest water stress on postharvest moisture loss of carrots (Daucus carota L.). Journal of Horticultural Science and Biotechnology, 73, 347-352.Google Scholar
  115. Shibairo, S. I., Upadhyaya, M. K., & Toivonen, P. M. A. (1998b). Potassium nutrition and postharvest moisture loss in carrots (Daucus carota L.). Journal of Horticultural Science and Biotechnology, 78, 862-866.Google Scholar
  116. Simon, P.W. (1990). Carrots and other horticultural crops as a source of provitamin A carotenes. HortScience, 25, 1495-1499.Google Scholar
  117. Simpfendorfer, S., Heenan, D. P., Kirkegaard, J. A., Lindbeck, K. D., & Murray, G. M.(2004). Impact of tillage on lupin growth and the incidence of pathogenic fungi in southern New South Wales. Australian Journal of Experimental Agriculture, 44, 53-56.Google Scholar
  118. Snowdon, A. L. (1992). Watery soft rot of carrots and parsnips caused by Sclerotinia minor Jagger andSclerotinia sclerotiorum (Lib.) de Bary. In: Color Atlas of Post-Harvest Diseases and Disorders of Fruits and Vegetables. Volume 2: Vegetables. Boca Raton, FL: CRC Press, 290-291.Google Scholar
  119. Stack, R. W., Gudmestad, N. C., & Lee, C. (1998). Effect of preharvest benomyl spray and aster yellows on storage of carrots. Phytopathology, 88, S117-S118.Google Scholar
  120. Stack, R. W., Cihacek, L. J., Lee, C. W., & Hansen, J. M. (2002). Effect of calcium, nitrogen, and potassium fertilization on white mold of stored carrots. Phytopathology, 92, S78-S79.Google Scholar
  121. Steadman, J. R. (1979). Control of plant diseases caused by Sclerotinia species. Phytopathology, 69, 904-907.Google Scholar
  122. Steadman, J. R. (1983). White mold - a serious yield-limiting disease of bean. Plant Disease, 67, 346-350.Google Scholar
  123. Subbarao, K. V. (1998). Progress toward integrated management of lettuce drop. Plant Disease, 82, 1068-1078.Google Scholar
  124. Subbarao, K. V. (2002). Cottony rot/Pink rot. In: Compendium of umbelliferous crop diseases. Davis, R. M. and Raid, R. N. (Eds.). APS Press, St. Paul, MN, 29-30.Google Scholar
  125. Suojala, T., & Pessala, R. (1999). Optimal harvest time of carrot and white cabbage for storage. In: Agri-Food Quality II. Quality management of fruits and vegetables. Hägg, M., Ahvenainen, R., Evers, A. M., & Tiilikkala, K. (Eds.). The Royal Society of Chemistry, Cambridge, UK, 227-231.Google Scholar
  126. Tahvonen, R. (1985). The prevention of Botrytis cinerea and Sclerotinia sclerotiorum on carrots during storage by spraying the tops with fungicide before harvesting. Annales Agriculturae Fenniae, 24, 89-95.Google Scholar
  127. Terry, L. A. & Joyce, D. C. (2004). Elicitors of induced disease resistance in postharvest horticultural crops: a brief review. Postharvest Biology and Technology, 32, 1-13.Google Scholar
  128. Tronsmo, A. (1989). Trichoderma harzianum used for biological control of storage rot on carrots. Norwegian Journal of Agricultural Sciences, 3, 157-161.Google Scholar
  129. Turkington, T. K., & Morall, R. A. A. (1990). Influence of canopy density on risk and incidence of sclerotinia stem rot of canola. Canadian Journal of Plant Pathology, 12, 339.Google Scholar
  130. Turkington, T. K., Morall, R. A. A., & Gugel, R. K. (1991). Use of petal infestation to forecast stem rot of canola: Evaluation of early bloom sampling, 1985-1990. Canadian Journal of Plant Pathology, 13, 50-59.Google Scholar
  131. Twengström, E., Sigvald, R., Svensson, C., & Yuen, J. (1998). Forecasting Sclerotinia stem rot in spring sown oilseed rape. Crop Protection, 17, 405-411.Google Scholar
  132. Uecker, F. A., Ayers, W. A., & Adams, P. B. (1978). A new hyphomycete on sclerotia of Sclerotinia sclerotiorum. Mycotaxon, 7, 275-282.Google Scholar
  133. Van den Berg, L., & Yang, S. M. (1969). Effect of relative humidity on production of extracellular pectolytic enzymes by Botrytis cinerea and Sclerotinia sclerotiorum. Canadian Journal of Botany, 47, 1007-1010.Google Scholar
  134. Van Loenen, M. C. A., Turbett, Y., Mullins, C. E., Feilden, N. E. H., Wilson, M. J., Leifert, C., & Seel, W. E. (2003). Low temperature-short duration steaming of soil kills soil-borne pathogens, nematode pests and weeds. European Journal of Plant Pathology, 109, 993-1002.Google Scholar
  135. Warton, B., Matthiessen, J. N., & Shackleton, M. A. (2001). Glucosinolate content and isothiocyanate evolution: Two measures of the biofumigation potential of plants. Journal of Agricultural and Food Chemistry, 49, 5244-5250.PubMedGoogle Scholar
  136. Weber, Z. (2003). Efficacy of biological and chemical protection of winter oilseed rape against white mould. Bulletin of the Polish Academy of Sciences Biological Sciences, 51, 149-152.Google Scholar
  137. Wegulo, S. N., Sun, P., Martinson, C. A., & Yang, X. B. (2000). Spread of Sclerotinia stem rot of soybean from area and point sources of apothecial inoculum. Canadian Journal of Plant Science, 80, 389-402.Google Scholar
  138. Weiss, A., Hipps, L. E., Blad, B. L., & Steadman, J. R. (1980). Comparison of within-canopy microclimate and white mold disease (Sclerotinia sclerotiorum) development in dry edible beans as influenced by canopy structure and irrigation. Agricultural Meteorology, 22, 11-21.Google Scholar
  139. Willets, H. J., & Wong, A. L. (1980). The biology of Sclerotinia sclerotiorum, S. trifoliorum, and S. minor with emphasis on specific nomenclature. Botanical Review, 46, 101-165.Google Scholar
  140. Williams, J. R., & Stelfox, D. (1980). Influence of farming practices in Alberta on germination and apothecium production of sclerotia of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology, 2, 169-172.Google Scholar
  141. Yang, J., Kharbanda, P. D., & Tewari, J. P. (2001). Studies on disease suppressiveness of compost. Canadian Journal of Plant Pathology, 23, 191.Google Scholar
  142. Zhou, T., & Boland, G. J. (1998). Biological control strategies for Sclerotinia diseases. In: Plant-microbe interaction and biological control. Boland, G. J., & Kuykendall, L. D. (Eds.). Russell Dekker & Sons Publications Ltd., New York, 127-155.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Cezarina Kora
    • 1
  • Mary Ruth McDonald
    • 2
  • Greg J. Boland
    • 3
  1. 1.Pest Management CentreAgriculture and Agri-Food CanadaOttawaCanada
  2. 2.Department of Plant AgricultureUniversity of GuelphCanada
  3. 3.Department of Environmental BiologyUniversity of GuelphCanada

Personalised recommendations