Biological And Integrated Means to Control Rust Diseases

  • Salvatore Moricca
  • Alessandro Ragazzi
Part of the Integrated Management of Plant Pests and Diseases book series (IMPD, volume 3)


This chapter reviews strategies in rust control, with a special emphasis on biological control, in the light of evidence produced in recent years showing that plant disease control is most effective when an integrated management approach is followed. A survey of the fungal antagonists (hyperparasites) most effective against rust pathogens is given. The mode of action of these antagonists is described, and the main problems concerning biological control are discussed, on the basis of the optimal characteristics of an antagonist or biocontrol agent. The value and limitations of other control measures besides biological control (eradication, definition of hazard areas, quarantine, cultural practices, chemical treatments, and plant breeding for disease resistance) are also outlined. A consideration of all control measures suggests that crop protection requires a holistic approach integrating a broad range of control techniques.


Biological Control Rust Fungus Rust Disease CABI Publishing Host Cell Wall 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Baky, N. F., & Abdel-Salam, A. H. (2003). Natural incidence of Cladosporium spp. as a bio-control agent against whiteflies and aphids in Egypt. Journal of Applied Entomology, 127, 228-235.CrossRefGoogle Scholar
  2. Abo-Foul, S., Raskin, V. I., Sztejnberg, A., & Marder, J. B. (1996). Disruption of chlorophyll organization and function in powdery mildew-diseased cucumber leaves and its control by the hyperparasite Ampelomyces quisqualis. Phytopathology, 86, 195-199.CrossRefGoogle Scholar
  3. Agrios, G. N., (2005). Plant Pathology (5$th$ edition). San Diego, USA: Academic Press, 922 pp.Google Scholar
  4. Allen, D. J. (1982). Verticillium lecanii on the bean rust fungus, Uromyces appendiculatus. Transactions of the British Mycological Society, 79, 362.Google Scholar
  5. Anderson, R. L., McCartney, T. C., Cost, N., Devine, H., & Botkin, M. (1988). Fusiform-rust-hazard maps for loblolly and slash pines. Research note - Southern Forest Experiment Station,No. SE-351. USDA Forest Service: 7 pp.Google Scholar
  6. Assante, G., Maffi, D., Saracchi, M., Farina, G., Moricca, S., & Ragazzi, A. (2004). Histological studies on the mycoparasitism of Cladosporium tenuissimum on urediniospores of Uromyces appendiculatus. Mycological Research, 108, 170-82.PubMedCrossRefGoogle Scholar
  7. Bais, H. P., Fall, R., & Vivanco, J. M. (2004). Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology, 134, 307-319.PubMedCrossRefGoogle Scholar
  8. Baker, K. F., & Cook, R. J. (1974). Biological control of Plant Pathogens. W. H. Freeman and Co. San Francisco: 433 pp.Google Scholar
  9. Barnett, H. L., & Binder, F. L. (1973). The fungal host parasite relationship. Annual Review of Phytopathology, 11, 273-292.CrossRefGoogle Scholar
  10. Bauer, R., Lutz, M., & Oberwinkler, F. (2004). Tuberculina-rusts: a unique basidiomycetous interfungal cellular interaction with horizontal nuclear transfer.Mycologia, 96, 960-967.CrossRefGoogle Scholar
  11. Benhamou, N., & Brodeur, J. (2000). Evidence for antibiosis and induced host defense reactions in the interaction between Verticillium lecanii and Penicillium digitatum, the causal agent of green mold. Phytopathology, 90, 932-943.CrossRefPubMedGoogle Scholar
  12. Biffen, R. H. (1905). Mendel’s laws of inheritance and wheat breeding. Journal of Agricultural Science, 1, 4-48.Google Scholar
  13. Bigirimana, J., De Meyer, G., Poppe, J., Elad, Y., & Hofte, M. (1997). Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harzianum. Mededelingen-Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, Universiteit Gent, 62, 1001-1007.Google Scholar
  14. Biraghi, A. (1940). Osservazioni e considerazioni su Tuberculina sbrozzii Cav. et Sacc. associata a Puccinia vincae Berk. Bollettino della Regia Stazione di Patologia Vegetale di Roma, Nuova Serie, XX, 71-80.Google Scholar
  15. Boosalis, M. G. (1964). Hyperparasitism. Annual Review of Phytopathology, 2, 363-376.CrossRefGoogle Scholar
  16. Bouriquet, G. (1942). Recherches systématiques, biologiques et cytologiques sur les maladies des plantes cultivées à Madagascar. Thèse, Faculté des Sciences de l’Université de Paris.Google Scholar
  17. Brasier, C. M. (1990). The unexpected element: mycovirus involvement in the outcome of two recent pandemics, dutch elm and chestnut blight. In: Burdon J. J. & Leather S. R. (Eds), Pests, pathogens and plant communities (pp. 289-308). Oxford: Blackwell Scientific Publications.Google Scholar
  18. Buchenauer, H., (1982). Chemical and biological control of cereal rusts. In: Scott K. J. & Chakravorty A. K. (Eds), The Rust Fungi (pp. 247-279). New York, USA: Academic Press.Google Scholar
  19. Butler, E. E., (1957). Rhizoctonia solani as a parasite of fungi. Mycologia, 49, 354-373.CrossRefGoogle Scholar
  20. Butt, T. M., Jackson, C., & Magan, N. (2001). Introduction – Fungal biological control agents: progress, problems and potential. In: Butt T. M., Jackson C. & Magan, N. (Eds), Fungi as biocontrol agents (pp. 1-8). Wallingford, UK: CABI Publishing.Google Scholar
  21. Byler, J. W., & Cobb, F. W. Jr. (1969). Fungi associated with galls caused by Peridermium harknessii. Phytopathology, 59, 1020.Google Scholar
  22. Byler, J. W., Cobb, F. W. Jr., & Parmenter, J. R. Jr. (1972). Occurrence and significance of fungi inhabiting galls caused by Peridermium harknessii. Canadian Journal of Botany, 50, 1275-1282.Google Scholar
  23. Carlile, W. R. (1988). Control of crop diseases. Edward Arnold (Ed.). London: 100 pp.Google Scholar
  24. Carling, D. E., Brown, M. F., & Millikan, D. F. (1976). Ultrastructural examination of thePuccinia graminisDarluca filum host–parasite relationship. Phytopathology, 66, 419-422.Google Scholar
  25. Castellani, E., & Graniti, A. (1949). Su un Verticillium parassita del Cronartium asclepiadeum. Nuovo Giornale Botanico Italiano, 56, 4, 628-638.Google Scholar
  26. Caswell, J. A., & Mojduszka, E. M. (1996). Using informational labeling to influence the market for quality in food products. American Journal of Agricultural Economics, 78, 1248-1253.CrossRefGoogle Scholar
  27. Cavara, F. & Saccardo, P. A., (1899). ≪Tuberculina sbrozziiGt; nov. spec. parassita delle foglie di Vinca major L. Nuovo Giornale Botanico Italiano, 6, 322-328.Google Scholar
  28. Chen, X. M. (2005). Epidemiology and control of stripe rust on wheat. Canadian Journal of Plant Pathology, 27, 314–337.Google Scholar
  29. CMI. (1977). Distribution Maps of Plant Diseases No. 475 (Edition 2). Wallingford, UK: CAB International.Google Scholar
  30. Cook, R. J. (1993). Making greater use of introduced microorganisms for biological control of plant pathogens. Annual Review of Phytopathology, 31, 53-80.PubMedCrossRefGoogle Scholar
  31. Currie, C. R. (1995). Dissemination of the mycoparasite Scytalidium uredinicola by Epuraea obliquus Hatch (Coleoptera: Nitulidae). Canadian Journal of Botany, 73, 1338-1344.Google Scholar
  32. Davis, R. D. (2001). Asparagus rust recorded in Australia. Australasian Plant Pathology, 30, 183-184.CrossRefGoogle Scholar
  33. Dawson, W. M., McCracken, A. R., & Carlisle, D. (2005). Short-rotation coppice willow mixtures and yield. In: Pei M. & McCracken A. R. (Eds.), Rust diseases on willow and poplar (pp. 195-208). Wallingford, UK: CAB International.Google Scholar
  34. De Waal, A. (1991). Hunger in history: food shortage, poverty, and deprivation. Population Studies, 45, 2, 365-366.CrossRefGoogle Scholar
  35. Deacon, J. W. (1994). Rhizosphere constraints affecting biocontrol organisms applied to seeds. In: Seed treatment: prospects and progress. BCPC Monograph 57 (pp. 315–327). Thornton Heath: British Crop Protection Council.Google Scholar
  36. Dickens, J. S. W. (1990). Studies on the chemical control of chrysanthemum white rust caused by Puccinia horiana. Plant Pathology, 39, 3, 434-442.CrossRefGoogle Scholar
  37. Duffy, B., Keel, C., & Défago, G. (2004). Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection. Applied and Environmental Microbiology, 70, 1836-42.PubMedCrossRefGoogle Scholar
  38. Dugan, F. M., & Lupien, S. L. (2002). Filamentous fungi quiescent in seeds and culm nodes of weedy and forage grass species endemic to the Palouse Region of Washington and Idaho. Mycopathologia, 156, 31-40.PubMedCrossRefGoogle Scholar
  39. Elad, Y. (1996). Mechanisms involved in the biological control of Botrytis cinerea incited disease. European Journal of Plant Pathology, 102, 719-732.CrossRefGoogle Scholar
  40. Ellis, M. B. (1976). More Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, UK.Google Scholar
  41. Flor, H. H. (1956). The complementary genetic systems in flax and flax rust. Advances in Genetics, 8, 29-54.CrossRefGoogle Scholar
  42. Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337-359.PubMedCrossRefGoogle Scholar
  43. Garrett, K. A., & Mundt, C. C. (1999). Epidemiology in mixed host populations. Phytopathology, 89, 984-990.CrossRefPubMedGoogle Scholar
  44. Gilg, A. W., & Battershill, M. (1998). Quality farm food in Europe: a possible alternative to the industrialised food market and to current agri-environmental policies: lessons from France. Food Policy, 23, 25-40.CrossRefGoogle Scholar
  45. Glick, B. R., & Bashan, Y. (1997). Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnology Advances, 15, 353-378.PubMedCrossRefGoogle Scholar
  46. Goodding, L. N., (1932). Notes on biological control of blister rust. Western Blister Rust Newsletter, 7, 51-53.Google Scholar
  47. Grasso, V. (1954). Antibiosi tra una Tuberculina ed un Uredinale, ospiti del melo. Annali dell’ Accademia Italiana di Scienze Forestali, 3, 21-25.Google Scholar
  48. Gross, H. L., Ek, A. R., & Patton, R. F. (1983). Site character and infection hazard for the sweetfern rust disease in northern Ontario. Forest Science, 29, 771-778.Google Scholar
  49. Harlan, J. R. (1976). Diseases as a factor in plant evolution. Annual Review of Phytopathology, 14, 31-51.CrossRefGoogle Scholar
  50. Harman, G. E. (2000). Myths and dogmas of biocontrol: Changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease, 84, 377-393.CrossRefGoogle Scholar
  51. Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. & Lorito, M. (2004). Trichoderma species-opportunistic avirulent, plant symbionts. Nature Reviews, 2, 43-56.Google Scholar
  52. Hassebrauk, K. (1936). Pilzische Parasiten der Getreideroste. Phytopathologische Zeitschrift, 9, 513-516.Google Scholar
  53. Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Disease, 87, 4-10.CrossRefGoogle Scholar
  54. Howell, C. R., & Stipanovic, R. D. (1995). Mechanisms in the Biocontrol of Rhizoctonia solani-induced cotton seedling disease by Gliocladium virens: antibiosis. Phytopathology, 85, 469-472.CrossRefGoogle Scholar
  55. Hubert, E. E. (1932). Biological control by means of the purple mold. Western Blister Rust Newsletter 7, 96-98.Google Scholar
  56. Hulea, A. (1939). Contributions à la connaissance des champignons commensaux des Uredinées. Bulletin de la Section Scientifique de l’Academie de Roumanie, 22, 1-19.Google Scholar
  57. Keener, P. D. (1954). Cladosporium aecidiicola Thuem. and Tubercolina persicina (Ditm). Sacc. associated with Puccinia conspicua (Arth.) Mains on Helenium hoopesii A. Gray in Arizona. Plant Disease Reporter, 38, 691-694.Google Scholar
  58. Kinloch, B. B. Jr. (2003). White pine blister rust in North America: past and prognosis. Phytopathology, 93, 1044-1047.CrossRefPubMedGoogle Scholar
  59. Kiss, L. (2001). The role of hyperparasites in host plant-parasitic fungi relationships. In: Jeger M. J. & Spence N. J. (Eds), Biotic Interactions in Plant-pathogen Associations (pp. 227-236). Wallingford, UK: CABI Publishing.Google Scholar
  60. Koc, N. K., Forrer, H. R., & Défago, G. (1983). Hyperparasitism of Aphanocladium album on aecidiospores and teliospores of Puccinia graminis f. sp. tritici. Phytopathologische Zeitschrift, 107, 219-223.CrossRefGoogle Scholar
  61. Koc, N. K., & Défago, G. (1983). Studies on the host range of the hyperparasite Aphanocladium album. Phytopathologische Zeitschrift, 107, 214-218. CrossRefGoogle Scholar
  62. Kotthoff, P. (1937). Verticillium coccorum (Petch) Weesterdijk als Parasit auf Puccinia chrysanthemi Roze. Angewandte Botanik, 19, 127-130.Google Scholar
  63. Kranz, G., & Brandenburger, W. (1981). An amended host list of the rust parasite Eudarluca caricis. Journal of Plant Disease Protection, 88, 682-702.Google Scholar
  64. Kranz, J. (1981). Hyperparasitism of biotrophic fungi. In: Blakeman J. P. (Ed), Microbial ecology of the phylloplane (pp. 327-352). London: Academic Press.Google Scholar
  65. Kuhlman, E. G., Carmichael, J. W., & Miller, T. (1976). Scytalidium uredinicola, a new mycoparasite of Cronartium fusiforme on Pinus. Mycologia, 68, 1188-1203.CrossRefGoogle Scholar
  66. Lannou, C., De Vallavieille-Pope, C., & Goyeau, H. (1995). Induced resistance in host mixtures and its effect on disease control in computer-simulated epidemics. Plant Pathology, 44, 478-489.CrossRefGoogle Scholar
  67. Lannou, C., Hubert, P., & Gimeno, C. (2005). Competition and interactions among stripe rust pathotypes in wheat-cultivar mixtures. Plant Pathology, 54, 699-712.CrossRefGoogle Scholar
  68. Larran, S., Perelló, A., Simón, M. R., & Moreno, V. (2002). Isolation and analysis of endophytic microorganisms in wheat (Triticum aestivum L.) leaves. World Journal of Microbiology and Biotechnology, 18, 7, 683-686.CrossRefGoogle Scholar
  69. Leinhos, G. M. E., & Buchenauer, H. (1992). Hyperparasitism of selected fungi on rust fungi of cereal. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 99, 482-498.Google Scholar
  70. Lim, H. S., Kim, Y. S., & Kim, S. D. (1991). Pseudomonas stutzeri YPL-1 genetic transformation and anti-fungal mechanism against Fusarium solani, an agent of plant root rot. Applied and Environmental Microbiology, 57, 510-516.PubMedGoogle Scholar
  71. Lim, T. K., & Nik, W. Z. (1983). Mycoparasitism of the coffe rust pathogen, Hemileia vastatrix, by Verticillium psalliotae in Malaysia. Pertanika, 6, 23.Google Scholar
  72. Littlefield, L. J. (1981). Biology of the plant rusts. Iowa, USA: Iowa State University Press, 103 pp.Google Scholar
  73. Locci, R., Ferrante, G. M. & Rodriguez, C. J. (1971). Studies by transmission and scanning electron microscopy on the Hemileia vastatrixVerticillium hemileiae association. Rivista di Patologia Vegetale, 7, 127.Google Scholar
  74. Maloy, O. C. (1997). White pine blister rust control in North America: a case history. Annual Review of Phytopathology, 35, 87-109.PubMedCrossRefGoogle Scholar
  75. Manocha, M. S. (1985). Specificity of mycoparasite attachment to the host cell wall surface. Canadian Journal of Botany, 63, 772-778.Google Scholar
  76. Mathre, D. E., Cook, R. J., & Callan, N. W. (1999). From discovery to use: Traversing the world of commercializing biocontrol agents for plant disease control. Plant Disease, 83, 972-983.CrossRefGoogle Scholar
  77. Mielke, J. K. (1933). Tuberculina maxima in Western North America. Phytopathology, 23, 299-305.Google Scholar
  78. Moltzan, B. D., Blenis, P. V., & Hiratsuka, Y. (2001). Temporal occurrence and impact of Scytalidium uredinicola, a mycoparasite of western gall rust. Candian Journal of Plant Pathology, 23, 384-390.Google Scholar
  79. Morgan–Jones, G., & McKemy, J. M. (1990). Studies in the genus Cladosporium sensu lato: I. Concerning Cladosporium uredinicola, occurring on telial columns of Cronartium quercuum and other hosts. Mycotaxon, 39, 185-202.Google Scholar
  80. Moricca, S., & Ragazzi, A. (1998). Occurrence and significance of Cladosporium tenuissimum on two-needle pine rust aeciospores. In: Proceedings of the First IUFRO “Rusts of Forest Trees” WP Conference, 2-7 August 1998, Saariselkä, Finland, 171-182.Google Scholar
  81. Moricca, S., Ragazzi, A., & Mitchelson, K. R. (1999). Molecular and conventional detection and identification of Cladosporium tenuissimum on two–needle pine rust aeciospores. Canadian Journal of Botany 77, 339-347.CrossRefGoogle Scholar
  82. Moricca, S., Ragazzi, A., & Assante, G. (2005). Biocontrol of rust fungi by Cladosporium tenuissimum. In: Pei M. & McCracken A. R. (Eds.), Rust Diseases on Willow and Poplar (pp. 213-229). Wallingford, UK: CABI Publishing.Google Scholar
  83. Moricca, S., Ragazzi, A., Mitchelson, K. R., & Assante, G. (2001) Antagonism of the two-needle pine stem rust fungi Cronartium flaccidum and Peridermium pini byCladosporium tenuissimum in vitro and in planta. Phytopathology, 91, 457-468.CrossRefPubMedGoogle Scholar
  84. Moriondo, F. (1975). Caratteristiche epidemiche della ruggine vescicolosa del pino: Cronartium flaccidum (Alb. et Schw.) Wint. in Italia. Annali dell’ Accademia Italiana di Scienze Forestali, 24, 331-406.Google Scholar
  85. Mundt, C. C. (2005). Host diversity, epidemic progression and pathogen evolution. In: Pei M. & McCracken A. R. (Eds.), Rust diseases on willow and poplar (pp. 175-183). Wallingford, UK: CABI Publishing.Google Scholar
  86. Nasini, G., Arnone, A., Assante, G., Bava, A., Moricca, S., & Ragazzi, A. (2004). Secondary mould metabolites of Cladosporium tenuissimum, a hyperparasite of rust fungi. Phytochemistry, 65, 2107-2111.PubMedCrossRefGoogle Scholar
  87. Paulitz, T. C. (2001). Biological control in greenhouse systems. Annual Review of Phytopathology, 39, 103-133.PubMedCrossRefGoogle Scholar
  88. Pei, M., & Hunter, T. (2000). Integrated control of willow rust in renewable energy plantations in the UK. Pesticide Outlook, 11, 4, 145-148.CrossRefGoogle Scholar
  89. Pei, M. H., & Yuan, Z. W. (2005). Mycoparasite Sphaerellopsis filum and its potential for biological control of willow rust. In: Pei M. H. & McCracken A. R. (Eds),Rust diseases of willow and poplar (pp. 243–253). Wallingford, UK: CAB International.Google Scholar
  90. Petrini, O. (1991). Fungal endophytes of tree leaves. In: Andrews J. H. & Hirano S. S. (Eds), Microbial Ecology of Leaves (pp. 179-197). New York: Springer Verlag.Google Scholar
  91. Powell, J. M. (1971a). Incidence and effect of Tuberculina maxima on cankers of the pine stem rust, Cronartium comandrae. Phytoprotection, 52, 104-111.Google Scholar
  92. Powell, J. M. (1971b). Fungi and bacteria associated with Cronartium comandrae on lodgepole pine in Alberta. Phytoprotection, 52, 45-51.Google Scholar
  93. Ragazzi, A., & Moricca, S. (1986). Distribuzione in Italia di Vincetoxicum hirundinaria Med., ospite intermedio di Cronartium flaccidum (Alb. et Schw.) Wint. L’Italia Forestale e Montana, 16, 204-215.Google Scholar
  94. Rayss, R. (1943). Contribution a l’étude de Deuteromycétes de Palestine.Palestine Journal of Botany, Serie 3(1), 22-51.Google Scholar
  95. Rostrup, E. (1890). Ustilagineae, Daniae. Festkrift Botanisk Forening i Kjbenhaon, April 1890, 117-168.Google Scholar
  96. Roy, G., Laflamme, G., Bussières, G., & Dessurreault, M. (2003). Field tests on biological control of Heterobasidion annosum by Phaeotheca dimorphospora in comparison with Phlebiopsis gigantea. Forest Pathology, 33, 127-140.CrossRefGoogle Scholar
  97. Saksirirat, W., & Hoppe, H. H. (1990). Verticillium psalliotae, an effective mycoparasite of the soybean rust fungus Phakopsora pachyrizi Syd.Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 97, 622-633.Google Scholar
  98. Schippers, B., Bakker, A. W., & Bakker, P. A. H. M. (1997). Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annual Review of Phytopathology, 25, 339-358.CrossRefGoogle Scholar
  99. Schrader, G., & Unger, J. G. (2003). Plant quarantine as a measure against invasive alien species: the framework of the International Plant Protection Convention and the plant health regulations in the European Union. Biological Invasions, 5, 357-364.CrossRefGoogle Scholar
  100. Schroth, M. N., & Hancock, J. G. (1981). Selected topics in biological control. Annual Review of Microbiology, 35, 453-476.PubMedCrossRefGoogle Scholar
  101. Sharma, I. K., Vyas, S. C., & Jain, A. C. (1977). Tuberculina costaricana Syd.: a new hyperparasite on groundnut rust (Puccinia arachidis Speg.). Current Science, 46, 311.Google Scholar
  102. Sharma, J. K. & Heather, W. A. (1980). Effect of Cladosporium aecidiicola Thum. on the viability of urediniospores of Melampsora medusae Thum. in storage. European Journal of Forest Pathology, 10, 360-364.CrossRefGoogle Scholar
  103. Sharma, J. K., & Heather, W. A. (1981a). Antagonism by three species of Cladosporium to three races of Melampsora larici-populina Kleb. Australian Forest Research, 11, 283-293.Google Scholar
  104. Sharma, J. K. & Heather, W. A. (1981b). Hyperparasitism of Melampsora larici-populina by Cladosporium herbarum and Cladosporium tenuissimum. Indian Phytopathology, 34, 395-397.Google Scholar
  105. Smith, H. S. (1919). On some phases of insect control by the biological method. Journal of Econonic Entomology, 12, 288-292.Google Scholar
  106. South, D. B., & Zwolinksi, J. B. (1996). Chemicals used in southern forest nurseries. Southern Journal of Applied Forestry, 20,  3, 127-135.Google Scholar
  107. Spegazzini, C. (1912). Mycetes Argentinenses. Serie IV. Anales del Museo Nacional de Buenos Aires, 23, 1-146.Google Scholar
  108. Spegazzini, C. (1922). Fungi Paraguayenses.Anales del Museo Nacional de Historia Natural de Buenos Aires 31, 355-450.Google Scholar
  109. Spencer, D. M., & Atkey, P. T. (1981). Parasitic effect of Verticillium lecanii on two rust fungi. Transactions of the British Mycological Society, 77, 532-542.Google Scholar
  110. Spencer, D. M. (1980). Parasitism of carnation rust (Uromyces dianthi) by Verticillium lecanii. Transactions of the British Mycological Society, 74, 191-194.CrossRefGoogle Scholar
  111. Srivastava, A. K., Defago, G., & Boller, T. (1985). Secretion of chitinase by Aphanocladium album, a hyperparasite of wheat rust. Experientia, 41,1612-1613.PubMedCrossRefGoogle Scholar
  112. Srivastava, A. K., Defago, G., & Kern, H. (1985). Hyperparasitism of Puccinia horiana and other microcyclic rusts. Phytopathologische Zeitschrift, 114, 73-78.CrossRefGoogle Scholar
  113. Steyaert, R. L. (1930). Cladosporium hemileiae n. spec. Un parasite de l’Hemileia vastatrix Berk. & Br. Bulletin de la Société Royale de Botanique du Belgique, 63, 46-48.Google Scholar
  114. Sundaram, N. V. (1962). Studies on parasites of the rusts. Indian Journal of Agriculture, 32, 266.Google Scholar
  115. Sutton, B. C. (1973). Hyphomycetes from Manitoba and Saskatchewan, Canada. Mycological Papers, 132, 1-143.Google Scholar
  116. Sutton, J. C., & Peng, G. (1993). Manipulation and vectoring of biocontrol organisms to manage foliage and fruit diseases in cropping systems. Annual Review of Phytopathology, 31, 473-493.CrossRefGoogle Scholar
  117. Traquair, J. A., Meloche, R. B., Jarvis, W. R., & Baker, K. W. (1984). Hyperparasitism of Puccinia violae by Cladosporium uredinicola. Canadian Journal of Botany, 62, 181-184.Google Scholar
  118. Tsuneda, A. & Hiratsuka, Y. (1979). Mode of parasitism of a mycoparasite, Cladosporium gallicola, on western gall rust, Endocronartium harknessii. Canadian Journal of Plant Pathology, 1, 31-36.Google Scholar
  119. Tsuneda, A., Hiratsuka, Y., & Maruyama, P. J. (1980). Hyperparasitism of Scytalidium uredinicola on western gall rust Endocronartium harknessii. Canadian Journal of Botany, 58, 1154-1159.CrossRefGoogle Scholar
  120. Tubeuf, Von, C. (1930). Biologische bekämpfung des blasenrostes der weymouthskiefer. Zeitschrift für Pflanzenkrankheiten und Pflanzenshutz, 40, 177-181.Google Scholar
  121. Van Loon, L. C. (1997). Induced resistance in plants and the role of pathogenesis-related proteins. European Journal of Plant Pathology, 103, 753-765.CrossRefGoogle Scholar
  122. Waard, M. A., Georgopoulos, S. G., Hollomon, D. W., Ishii, H., Leroux, P., Ragsdale, N. N., Schwinn, F. J. (1993). Chemical control of plant diseases: problems and prospects. Annual Review of Phytopathology, 31, 403-421.Google Scholar
  123. Whelan, M. J., Hunter, T., Parker, S. R., & Royle, D. J. (1997). How effective is Sphaerellopsis filum as a biocontrol agent of Melampsora willow rust? Aspects of Applied Biology, 49, 143-148.Google Scholar
  124. Whipps, J. M. (1993). A review of white rust (Puccinia horiana Henn.) disease on chrysanthemum and the potential for its biological control with Verticillium lecanii (Zimm.) Viegas. Annals of Applied Biology, 122, 173-187.CrossRefGoogle Scholar
  125. Whipps, J. M. (1997). Developments in the biological control of soil-borne plant pathogens. Advances in Botanical Research, 26, 1-134.CrossRefGoogle Scholar
  126. Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experimental Botany, 52, 487-511.PubMedGoogle Scholar
  127. Whipps, J. M., & Lumsden, R. D. (2001). Commercial use of fungi as plant disease biological control agents: status and prospects. In: Butt T. M., Jackson C. & Magan, N. (Eds.), Fungi as biocontrol agents. Progress, problems and potential (pp. 9–22). Wallingford, UK: CABI Publishing.Google Scholar
  128. Wicker, E. F., & Woo, J. Y. (1973). Histology of blister rust cankers parasitized by Tuberculina maxima. Phytopathologische Zeitschrift, 76, 356.CrossRefGoogle Scholar
  129. Wolfe, M. S. (1985). The current status and prospects of multiline cultivars and variety mixtures for disease resistance. Annual Review of Phytopathology, 23, 251-273.CrossRefGoogle Scholar
  130. Wolfe, M. S., Barrett, J. A., & Jenkins, J. E. E. (1981). The use of cultivar mixtures for disease control. In: Jenkyn J. F. & Plumb R. T. (Eds), Strategies for the control of cereal disease (pp.73-80). Oxford, UK: Blackwell.Google Scholar
  131. Wraight, S. P., Jackson, M. A. & Kock, S. L. (2001). Production, stabilization and formulation of fungal biocontrol agents. In: Butt T. M., Jackson C. W. & Magan N. (Eds.),Fungi as biocontrol agents. Progress, problems and potential (pp. 253-288). Wallingford, UK: CABI Publishing.Google Scholar
  132. Yuen, G. Y., Steadman, J. R., Lindgren D. T., Schaff, D., & Jochum, C. (2001). Bean rust biological control using bacterial agents. Crop Protection, 20, 395-402.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Salvatore Moricca
    • 1
  • Alessandro Ragazzi
    • 1
  1. 1.Dipartimento di Biotecnologie agrarie Sezione di Patologia vegetaleUniversitá di FirenzeItaly

Personalised recommendations