Advertisement

Simulation Models for Potato Late Blight Management and Ecology

  • G. A. Forbes
  • W. E. Fry
  • J. L. Andrade-Piedra
  • D. Shtienberg
Chapter
Part of the Integrated Management of Plant Pests and Diseases book series (IMPD, volume 3)

Abstract

Late blight of potato has been one of the most widely studied diseases and particular attention has been given to the mathematical description of disease development. Several process based simulation models have been developed and this paper focuses primarily on several versions developed at Cornell University, and later through collaboration between that University, the International Potato Center and the Volcani Center. The most recent version, LB2004, has been validated in the highland tropics and several other countries. Historically, late blight simulators have been used to evaluate disease management scenarios. However, they have also been used for other purposes, including, sensitivity analysis of resistance components, comparative epidemiology, development of forecasting models and education. The potential for using disease simulation has and will continue to expand as improvements are made in supporting technology, both in computing power and acquisition of weather data.

Keywords

Late Blight Phytophthora Infestans International Potato Potato Late Blight Blight Severity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adler, N. E., Erselius, L. J., Chacón, M. G., Flier, W. G., Ordoñez, M. E., Kroon, L. P. N. M., & Forbes, G. A. (2004). Genetic diversity of Phytophthora infestans sensu lato in Ecuador provides new insight into the origin of this important plant pathogen. Phytopathology, 94, 154-162.CrossRefPubMedGoogle Scholar
  2. Andrade-Piedra, J. L., Forbes, G. A., Shtienberg, D., Grünwald, N. J., Taipe, M. V. & Fry, W. E. (2005a). Simulation of potato late blight in the Andes. II: validation of the LATEBLIGHT model. Phytopathology, 95, 1200-1208.CrossRefGoogle Scholar
  3. Andrade-Piedra, J. L., Forbes, G. A., Shtienberg, D., Grünwald, N. J., Taipe, M. V., Hijmans, R. J., & Fry, W. E. (2005b). Qualification of a plant disease simulation model: Performance of the LATEBLIGHT model across a broad range of environments. Phytopathology, 95, 1412-1422.CrossRefGoogle Scholar
  4. Andrade-Piedra, J. L., Hijmans, R. J., Forbes, G. A., Fry, W. E. & Nelson, R. J. (2005c) Simulation of potato late blight in the Andes. I: modification and parameterization of the LATEBLIGHT model. Phytopathology, 95, 1191-1199.CrossRefGoogle Scholar
  5. Bergot, M., Cloppet, E., Pérarnaud, V., Déqúe, M., Marçais, B., & Desprez-Loustau, M. L. (2004). Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change. Global Change Biology, 10, 1539–1552.CrossRefGoogle Scholar
  6. Bourke, A. (1993). ‘The Visitation of God’? The potato and the great Irish famine. Dublin, Ireland: Lilliput Press, Ltd., 230 pp.Google Scholar
  7. Bruhn, J. A., & Fry, W. E. (1981). Analysis of potato late blight epidemiology by simulation modeling. Phytopathology, 71, 612-616.Google Scholar
  8. Campbell, C. L., & Madden, L. V. (1990). Introduction to plant disease epidemiology. John Wiley & Sons, New York. 532 pp.Google Scholar
  9. Carlisle, D. J., Cooke, L. R., Watson, S., & Brown, A. E. (2002). Foliar aggressiveness of Northern Ireland isolates of Phytophthora infestans on detached leaflets of three potato cultivars. Plant Pathology, 51, 424-434.CrossRefGoogle Scholar
  10. Crissman, C. C., Espinosa, P., Ducrot, C. E. H., Cole, D. C., & Carpio, F. (1998). The case study site: physical, health and potato farming systems in Carchi province. In: Crissman C. C., Antle J. M., & Capalbo, S. M. (Eds.). Economic, environmental, and health tradeoffs in agriculture: pesticides and the sustainability of andean potato production. Dordrecht, NL: Kluwer Academic Publishers, 85-120.Google Scholar
  11. Day, J. P., & Shattock, R. C. (1997). Aggressiveness and other factors relating to displacement of populations of Phytophthora infestans in England and Wales. European Journal of Plant Pathology, 103, 379-391.CrossRefGoogle Scholar
  12. Doster, M. A., & Fry, W. E. (1991). Evaluation by computer simulation of strategies to time metalaxyl applications for improved control of potato late blight. Crop Protection, 10, 209-214.CrossRefGoogle Scholar
  13. Doster, M. A., Milgroom, M. G., & Fry, W. E. (1990a). Quantification of factors influencing potato late blight suppression and selection for metalaxyl resistance in Phytophthora infestans: A simulation approach. Phytopathology, 80, 1190-1198.CrossRefGoogle Scholar
  14. Doster, M. A., Milgroom, M. G., & Fry, W. E. (1990b). Quantification of factors influencing potato late blight suppression and selection for metalaxyl resistance in Phytophthora infestans: a simulation approach. Phtopathology, 80, 1190-1198.CrossRefGoogle Scholar
  15. Drenth, A., Tas, I. C. Q., & Govers F (1994). DNA fingerprinting uncovers a new sexually reproducing population of Phytophthora infestans in the Netherlands. European Journal of Plant Pathology, 100, 97-107.CrossRefGoogle Scholar
  16. Elansky, S., Smirnov, A., Dyakov, Y., Dolgova, A., Filippov, A., Kozlovsky, B., et al. (2001). Genotypic analysis of Russian isolates of Phytophthora infestans from the Moscow region, Siberia and Far East. Journal of Phytopathology, 149, 605-611.CrossRefGoogle Scholar
  17. Fernández-Pavía, S. P., Grünwald, N. J., Díaz-Valasis, M., Cadena-Hinojosa, M., & Fry, W. E. (2004). Soilborne oospores of Phytophthora infestans in central Mexico survive winter fallow and infect potato plants in the field. Plant Disease, 88, 29-33.CrossRefGoogle Scholar
  18. Fohner, G. R., Fry, W. E., & White, G. B. (1984). Computer simulation raises questions about timing protectant fungicide application frequency according to a potato late blight forecast. Phytopathology, 74, 1145-1147.Google Scholar
  19. Forbes, G. A., Chacón M. G., Kirk, H. G., Huarte, M. A., Damme, M., Distel, S., et al. (2005) Stability of resistance to Phytophthora infestans in potato: an international evaluation. Plant Pathology, 54, 364-372.CrossRefGoogle Scholar
  20. Forbes, G. A., & Landeo, J. A. (2006). Late Blight. In: Gopal J., and Khurana, M. P. (Eds). Handbook of potato production, improvement, and postharvest management. Haworth Press Inc., Binghamton, NY, 279-320.Google Scholar
  21. Fry, W. E., Apple, A. E., & Bruhn, J. A. (1983). Evaluation of potato late blight forecasts modified to incorporate host resistance and fungicide weathering. Phytopathology, 73, 1054-1059.Google Scholar
  22. Fry, W. E., & Goodwin, S. B. (1997). Resurgence of the Irish potato famine fungus. Bioscience, 47, 363-371.CrossRefGoogle Scholar
  23. Fry, W.E., Goodwin, S. B., Matuszak, J. M., Spielman, L. J., Milgroom, M. G., & Drenth, A. (1992). Population genetics and intercontinental migrations of Phytophthora infestans. Annual Review of Phytopathology, 30, 107-129.CrossRefGoogle Scholar
  24. Fry, W. E., Milgroom, M. G., Doster, M. A., Bruhn, J. A., & Bruck, R. I. (1991). LATEBLIGHT: a plant disease management game - User’s Manual. Version 3.1 Microsoft Windows adaptation by Ticknor B. E. and Ameson P. A.: 27 pp.Google Scholar
  25. Gallegly, M. E., & Galindo, J. (1958). Mating types and oospores of Phytophthora infestans in nature in Mexico. Phytopathology, 48, 274-277.Google Scholar
  26. Goodwin, S. B., Cohen, B. A., Deahl, K. L. & Fry, W. E. (1994). Migration from northern Mexico as the probable cause of recent genetic changes in populations of Phytophthora infestans in the United States and Canada. Phytopathology, 84, 553-558.CrossRefGoogle Scholar
  27. Goodwin, S. B., Cohen, B. A., & Fry, W. E. (1994). Panglobal distribution of a single clonal lineage of the Irish potato famine fungus. Proceedings of the National Academy of Science of the USA., 91, 11591-11595.CrossRefGoogle Scholar
  28. Goodwin, S. B., Sujkowski, L. S., Dyer, A. T., Fry, B. A. & Fry, W. E. (1995). Direct detection of gene flow and probable sexual reproduction of Phytophthora infestans in Northern North America. Phytopathology, 85, 473-479.CrossRefGoogle Scholar
  29. Grünwald, N. J., Romero Montes, G., Lozoya Saldaña, H., Rubio Covarrubias, O. A., & Fry, W. E. (2002). Potato late blight management in the Toluca Valley: field validation of SimCast modified for cultivars with high field resistance. Plant Disease, 86, 1163-1168.CrossRefGoogle Scholar
  30. Hannukkala, A.O., Kaukoranta, T., Lehtinen, A., & Rahkonen, A. (2007). Late-blight epidemics on potato in Finland, 1933-2002; increased and earlier occurrence of epidemics associated with climate change and lack of rotation. Plant Pathology, 56, 167-176.CrossRefGoogle Scholar
  31. Hermansen, A., Hannukkala, A., Naerstad, R. H., & Brurberg, M. B. (2000). Variation in populations of Phytophthora infestans in Finland and Norway: mating type, metalaxyl resistance and virulence phenotype. Plant Pathology, 49, 11-22.CrossRefGoogle Scholar
  32. Hijmans, R. J., Forbes, G. A., & Walker, T. S. (2000). Estimating the global severity of potato late blight with GIS-linked disease forecast models. Plant Pathology, 49, 697-705.CrossRefGoogle Scholar
  33. Hohl, H. R., & Iselin, K. (1984). Strains of Phytophthora infestans from Switzerland with A2 mating type behaviour. Transactions of the British Mycological Society, 83, 529-530.CrossRefGoogle Scholar
  34. Kato, M., Mizubuti, E. S., Goodwin, S. B., & Fry, W. E. (1997). Sensitivity to protectant fungicides and pathogenic fitness of clonal lineages of Phytophthora infestans in the United States. Phytopathology, 87, 973-978.CrossRefPubMedGoogle Scholar
  35. Kleijnen, J. P. C., & Sargent, R. G. (2000) A methodology for fitting and validating metamodels in simulation. European Journal of Operational Research, 120, 14-29.CrossRefGoogle Scholar
  36. Kluge, E., & Gutsche, V. (1990). Krautfäuleprognose mittels Simulationsmodell – Ergebnisse der Anwendung 1982 bis 1988. Archiv für Phytopathologie und Pflanzenschutz, 26, 265-281.Google Scholar
  37. Luo Y., Teng, P. S., Fabellar, N. G., & TeBeest, D. O. (1998). The effects of global temperature change on rice leaf blast epidemics: A simulation study in three agroecological zones. Agriculture Ecosystems and Environement, 68, 187-196.CrossRefGoogle Scholar
  38. McClay, A. S., & Balciunas, J. K. (2005). The role of pre-release efficacy assessment in selecting classical biological control agents for weeds-applying the Anna Karenina principle. Biological control, 35, 197-207.CrossRefGoogle Scholar
  39. Miller, J. S., Johnson, D. A. & Hamm, P. B. (1998). Aggressiveness of isolates of Phytophthora infestans from the Columbia Basin of Washington and Oregon. Phytopathology, 88, 190-197.CrossRefPubMedGoogle Scholar
  40. Mizubuti, E. S. G., & Fry, W. E. (1998). Temperature effects on developmental stages of isolates from three clonal lineages of Phytophthora infestans. Phytopathology, 88, 837-843.CrossRefPubMedGoogle Scholar
  41. Mizubuti, E. S. G., & Fry, W. E. (2006). Potato late blight. In: Cooke B. M., Jones D. G., & Kaye B. (Eds.). The epidemiology of plant diseases (pp. 445-471). The Netherlands: Springer.Google Scholar
  42. Noordegraaf, A.V., Nielen, M., & Kleijnen, J. P. C. (2003). Sensitivity analysis by experimental design and metamodelling: case study on simulation in national animal disease control. European Journal of Operational Research, 146, 433-443.CrossRefGoogle Scholar
  43. Ortiz, O. G. T., & Forbes, G. (2003). Farmers’ Knowledge and Practices Regarding Fungicide Use for Late Blight Control in the Andes. In: Fernandez Northcote E. N. (Ed.). Proceedings of the International Workshop Complementing Resistance to Late Blight (Phytophthora infestans ) in the Andes, February 13-16, 2001. International Potato Center, Lima, Peru and Cochabamba, Bolivia, 45-56.Google Scholar
  44. Oyarzún, P., Taipe, J. A., & Forbes, G. (2003). Phytophthora infestans characteristics and activity in Ecuador. Country profile. In: Fernandez Northcote E. N. (Ed.). Proceedings of the International Workshop Complementing Resistance to Late Blight (Phytophthora infestans ) in the Andes, February 13-16, 2001. International Potato Center, Lima, Peru and Cochabamba, Bolivia, 15-25.Google Scholar
  45. Raposo, R., Wilks, D. S., & Fry, W. E. (1993). Evaluation of potato late blight forecasts modified to include weather forecasts: A simulation analysis. Phytopathology, 83, 103-108.CrossRefGoogle Scholar
  46. Rykiel, E. J. (1996). Testing ecological models: The meaning of validation. Ecological Modelling, 90, 229-244.CrossRefGoogle Scholar
  47. Schepers, H. T. A. M. (2004). Decision support systems for integrated control of late blight. Plant Breeding and Seed Science, 50, 57-61.Google Scholar
  48. Shannon, R. E. (1975). Systems Simulation: The Art and Science. Englewood Cliffs, NJ: Prentice-Hall, 387 pp.Google Scholar
  49. Shtienberg, D., Doster, M. A., Pelletier, J. R., & Fry, W. E. (1989). Use of simulation models to develop a low-risk strategy to suppress early and late blight in potato foliage. Phytopathology, 79, 590-595.CrossRefGoogle Scholar
  50. Shtienberg, D., & Fry, W. E. (1990). Field and computer simulation evaluation of spray-scheduling methods for control of early and late blight of potato. Phytopathology, 80, 772-777.CrossRefGoogle Scholar
  51. Shtienberg, D., Raposo, R., Bergeron, S. N., Legard, D. E., Dyer, A. T., & Fry, W. E. (1994). Incorporation of cultivar resistance in a reduced-sprays strategy to suppress early and late blights on potato. Plant Disease, 78, 23-26.Google Scholar
  52. Song, J., Bradeen, J. M., Naess, S. K., Raasch, J. A., Wielgus, S. M., Haberlach, G. T., et al. (2003). Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proceedings of the National Academy of Science, U.S.A., 100, 9128-9133.CrossRefGoogle Scholar
  53. Spadafora, V. J., Apple, A. E., Bruhn, J. A., & Fry, W. E. (1983). Evaluation of simple and complex potato late blight forecasts. Phytopathology, 73, 375.Google Scholar
  54. Spadafora, V. J., Bruhn, J. A., & Fry, W. E. (1984). Influence of selected protectant fungicides and host resistance on simple and complex potato late blight forecasts. Phytopathology, 74, 519-523.CrossRefGoogle Scholar
  55. Spielman, L. J., Drenth, A., Davidse, L. C., Sujkowski, L. J., Gu, W., Tooley, P.W., & Fry, W. E. (1991). A second world-wide migration and population displacement of Phytophthora infestans? Plant Pathology, 40, 422-430.CrossRefGoogle Scholar
  56. Spitters, C. J. T., & Schapendonk, A. H. C. M. (1989). Evaluation of breeding strategies for drought tolerance in potato by means of crop simulation. Plant and Soil, 123, 193-203.CrossRefGoogle Scholar
  57. Stephan, D., Schmitt, A., Carvalho, S. M., Seddon, B. & Koch, E. (2005). Evaluation of biocontrol preparations and plant extracts for the control of Phytophthora infestans on potato leaves. European Journal of Plant Pathology, 112, 235-246.CrossRefGoogle Scholar
  58. Sujkowski, L. S., Goodwin, S. B., Dyer, A. T., & Fry, W. E. (1994) Increased genotypic diversity via migration and possible occurrence of sexual reproduction of Phytophthora infestans in Poland. Phytopathology, 84, 201-207.CrossRefGoogle Scholar
  59. Thurston, H. D. (1992). Sustainable practices for plant disease management in traditional farming systems. Westview, Boulder, CO, 279 pp.Google Scholar
  60. Tooley, P. W., Fry W. E., & Villarreal Gonzalez, M. J. (1985) Isozyme characterization of sexual and asexual Phytophthora infestans populations. Journal of Heredity, 76, 431-435.Google Scholar
  61. Turkensteen, L. J., Flier, W. G., Wanningen, R., & Mulder, A. (2000). Production, survival and infectivity of oospores of Phytophthora infestans. Plant Pathology, 49, 688-696.CrossRefGoogle Scholar
  62. Van der Vossen, E., Sikkema, A., Hekkert, B. T. L., Gros, J., Musken, M., Stiekema, W. J., & Allefs, S. (2002). Cloning of an R gene from Solanum bulbocastanum conferring complete resistance to Phythophthora infestans. In: Lizarraga, C. (Ed.). Late Blight: managing the global threat. Proceeding of the Global Initiative on Late Blight Conference. Hamburg, Germany: International Potato Center, 155 pp.Google Scholar
  63. Van Haren, R. J. F., & Jansen, D. M. (2003). LINBAL, Light INterception By Active Leaflayers: description and application of a late blight limited potato growth model for the Andean Ecoregion. In: Westerdijk C. E., and Schepers, H. T. A. M., (Eds.). Proceedings of the seventh workshop of an European network on integrated control of potato late blight, Poznan, Poland, 2-6 October 2002. PPO Special Report no. 9. Wageningen, NL: Applied Plant Research, 133-178.Google Scholar
  64. Van Oijen, M. (1992a). Evaluation of breeding strategies for resistance and tolerance tolate blight in potato by means of simulation. Netherlands Journal of Plant Pathology, 98, 3-11.CrossRefGoogle Scholar
  65. Van Oijen, M. (1992b). Selection and use of a mathematical model to evaluate components of resistance to Phytophthora infestans in potato. Netherlands Journal of Plant Pathology, 98, 192-202.CrossRefGoogle Scholar
  66. Vanderplank, J. E. (1963). Plant Disease: Epidemics and Control. New York: Academic Press, 349 pp.Google Scholar
  67. Vega-Sanchez, M. E., Erselius, L. J., Rodriguez, A. M., Bastidas, O., Hohl, H. R., Ojiambo, P. S., et al. (2000). Host adaptation to potato and tomato within the US-1 clonal lineage of Phytophthora infestans in Uganda and Kenya. Plant Pathology, 49, 531-539.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • G. A. Forbes
    • 1
  • W. E. Fry
    • 2
  • J. L. Andrade-Piedra
    • 3
  • D. Shtienberg
    • 4
  1. 1.International Potato CenterApartado 1558Peru
  2. 2.College of Agriculture and Life Sciences Cornell UniversityIthacaUSA
  3. 3.Papa Andina Initiative - International Potato Center (CIP)QuitoApartado 17 21 1977
  4. 4.Department of Plant Pathology and Weed ScienceARO The Volcani CenterIsrael

Personalised recommendations