Molecular and Cellular Determinants for Generating ES-Cell Derived Dopamine Neurons for Cell Therapy

  • Jan Pruszak
  • Ole IsacsonEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 651)


Embryonic stem (ES) cells can generate midbrain dopaminergic (DA) neuronal phenotypes in vitro and have been successfully applied to restore function in animal models of Parkinson’s disease (PD). How can we best integrate our growing insight into the regulatory cascade of transcription factors guiding midbrain specification to further improve the in vitro differentiation of midbrain DA neurons for cell therapy of PD? To characterize the differentiation of authentic DA neurons in vitro, expression patterns of the numerous midbrain-characteristic markers need to be investigated. When using forced gene expression, such factors have to be closely monitored to avoid generation of nonphysiological cell types. Fluorescent markers such as Pitx3-GFP, TH-GFP, Sox1-GFP or surface antigens have proven useful for elimination of unwanted cell types by cell sorting, thereby averting tumors and increasing the DA fraction for transplantation studies. The importance of appropriate timing during application of extrinsic factors and the influence of cell-cell interactions in the dish has to be taken into account. This conceptual synopsis outlines current objectives, progress, but also challenges, in deriving midbrain DA neurons from pluripotent stem cells for clinical and scientific applications.


Embryonic Stem Embryonic Stem Cell Dopaminergic Neuron Human Embryonic Stem Cell Dopamine Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Perrier AL, Tabar V, Barberi T, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci USA 2004; 101:12543–12548.CrossRefPubMedGoogle Scholar
  2. 2.
    Sonntag KC, Pruszak J, Yoshizaki T et al. Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells; 2007; 25:411–418.CrossRefPubMedGoogle Scholar
  3. 3.
    Kawasaki H, Mizuseki K, Nishikawa S et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 2000; 28:31–40.CrossRefPubMedGoogle Scholar
  4. 4.
    Sonntag KC, Simantov R, Isacson O. Stem cells may reshape the prospect of parkinson’s disease therapy. Brain Res Mol Brain Res 2005; 134:34–51.CrossRefPubMedGoogle Scholar
  5. 5.
    Pruszak J, Sonntag KC, Aung MH et al. Markers and methods for cell sorting of human embryonic stem cell-derived neural cell population. Stem Cells 2007; 25:2257–2268.CrossRefPubMedGoogle Scholar
  6. 6.
    Isacson O, Bjorklund LM, Schumacher JM. Toward full restoration of synaptic and terminal function of the dopaminergic system in parkinson’s disease by stem cells. Ann Neurol 2003; 53 Suppl 3: S135–S146.CrossRefPubMedGoogle Scholar
  7. 7.
    Mendez I, Sanchez-Pernaute R, Cooper O et al. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with parkinson’s disease. Brain 2005; 128:1498–1510.CrossRefPubMedGoogle Scholar
  8. 8.
    Isacson O. The production and use of cells as therapeutic agents in neurodegenerative diseases. Lancet Neurol 2003; 2:417–424.CrossRefPubMedGoogle Scholar
  9. 9.
    Deacon T, Schumacher J, Dinsmore J et al. Histological evidence of fetal pig neural cell survival after transplantation into a patient with Parkinson’s disease. Nat Med 1997; 3:350–353.CrossRefPubMedGoogle Scholar
  10. 10.
    Dinsmore JH, Pakzaban P, Deacon TW et al. Survival of transplanted porcine neural cells treated with F(ab’)2 antibody fragments directed against donor MHC class-I in a rodent model. Transplant Proc 1996; 28:817–818.PubMedGoogle Scholar
  11. 11.
    Isacson O, Deacon TW, Pakzaban P et al. Kransplanted xenogeneic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres. Nat Med 1995; 1:1189–1194.CrossRefPubMedGoogle Scholar
  12. 12.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282:1145–1147.CrossRefPubMedGoogle Scholar
  13. 13.
    Bjorklund LM, Sanchez-Pernaute R, Chung S et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci USA 2002; 99:2344–2349.CrossRefPubMedGoogle Scholar
  14. 14.
    Lee SH, Lumelsky N, Studer L et al. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat Biotechnol 2000; 18:675–679.CrossRefPubMedGoogle Scholar
  15. 15.
    Deacon T, Dinsmore J, Costantini LC et al. Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation. Exp Neurol 1998; 149:28–41.CrossRefPubMedGoogle Scholar
  16. 16.
    Roy NS, Cleren C, Singh SK et al. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 2006; 12:1259–1268.CrossRefPubMedGoogle Scholar
  17. 17.
    Takagi Y, Takahashi J, Saiki H et al. Dopaminergic neurons generated from monkey embryonic stem cells function in a parkinson primate model. J Clin Invest 2005; 115:102–109.PubMedGoogle Scholar
  18. 18.
    Sanchez-Pernaute R, Studer L, Ferrari D et al. Long-term survival of dopamine neurons derived from parthenogenetic primate embryonic stem cells (cyno-1) after transplantation. Stem Cells 2005; 23:914–922.CrossRefPubMedGoogle Scholar
  19. 19.
    Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 2005; 19:1129–1155.CrossRefPubMedGoogle Scholar
  20. 20.
    Carson CT, Aigner S, Gage FH. Stem cells: the good, bad and barely in control. Nat Med 2006; 12:1237–1238.CrossRefPubMedGoogle Scholar
  21. 21.
    Kelly BB, Hedlund E, Kim C et al. A tyrosine hydroxylase-yellow fluorescent protein knock-in reporter system labeling dopaminergic neurons reveals potential regulatory role for the first intron of the rodent tyrosine hydroxylase gene. Neuroscience 2006; 142:343–354.CrossRefPubMedGoogle Scholar
  22. 22.
    Verlinsky Y, Strelchenko N, Kukharenko V et al. Human embryonic stem cell lines with genetic disorders. Reprod Biomed Online 2005; 10:105–110.PubMedGoogle Scholar
  23. 23.
    Hochedlinger K, Jaenisch R. Nuclears transplantation, embryonic stem cells and the potential for cell therapy. N Engl J Med 2003; 349:275–286.CrossRefPubMedGoogle Scholar
  24. 24.
    Chung CY, Seo H, Sonntag KC et al. Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum Mol Genet 2005; 14:1709–1725.CrossRefPubMedGoogle Scholar
  25. 25.
    Chung CY, Koprich JB, Endo S et al. An endogenous serine/threonine protein phosphatase inhibitor, G-substrate, reduces vulnerability in models of Parkinson’s disease. J Neurosci 2007; 27:8314–8323.CrossRefPubMedGoogle Scholar
  26. 26.
    McKinney-Freeman SL, Daley GQ. Towards hematopoietic reconstitution from embryonic stem cells: a sanguine future. Curr Opin Hematol 2007; 14:343–347.CrossRefPubMedGoogle Scholar
  27. 27.
    Sinclair SR, Fawcett JW, Dunnett SB. Dopamine cells in nigral grafts differentiate prior to implantation. Eur J Neurosci 1999; 11:4341–4348.CrossRefPubMedGoogle Scholar
  28. 28.
    Thompson LH, Andersson E, Jensen JB et al. Neurogenin2 identifies a transplantable dopamine neuron precursor in the developing ventral mesencephalon. Exp Neurol 2006; 198:183–198.CrossRefPubMedGoogle Scholar
  29. 29.
    Hedlund E, Pruszak J, Lardaro T et al. Embryonic stem (ES) cell-derived Pitx3-eGFP midbrain dopamine neurons survive enrichment by FACS and function in an animal model of Parkinson’s disease 2008. in submissionGoogle Scholar
  30. 30.
    Zhao S, Maxwell S, Jimenez-Beristain A et al. Generation of embryonic stem cells and transgenic mice expressing green fluorescence protein in midbrain dopaminergic neuron. Eur. J. Neurosci 2004; 19:1133–1140.CrossRefPubMedGoogle Scholar
  31. 31.
    Ono Y, Nakatani T, Sakamoto Y et al. Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development 2007; 134:3213–3225.CrossRefPubMedGoogle Scholar
  32. 32.
    Sonntag KC, Simantov R, Kim KS et al. Temporally induced Nurr1 can induce a nonneuronal dopaminergic cell type in embryonic stem cell differentiations. Eur J Neurosci 2004; 19:1141–1152.CrossRefPubMedGoogle Scholar
  33. 33.
    Ye W, Shimamura K, Rubenstein JL et al. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 1998; 93:755–766.CrossRefPubMedGoogle Scholar
  34. 34.
    Okada Y, Shimazaki T, Sobue G et al. Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Dev Biol 2004; 275:124–142.CrossRefPubMedGoogle Scholar
  35. 35.
    Smidt MP, Burbach JP. How to make a mesodiencephalic dopaminergic neuron. Nat Rev Neurosci 2007; 8:21–32.CrossRefPubMedGoogle Scholar
  36. 36.
    Horger BA, Nishimura MC, Armanini MP et al. Neurturin exerts potent actions on survival and function of midbrain dopaminergic neurons. J Neurosci 1998; 18:4929–4937.PubMedGoogle Scholar
  37. 37.
    Rosenblad C, Kirik D, Bjorklund A. Neurturin enhances the survival of intrastriatal fetal dopaminergic transplants. Neureport 1999; 10:1783–1787.CrossRefGoogle Scholar
  38. 38.
    Krieglstein K, Reuss B, Maysinger D et al. Short communication: transforming growth factor-beta mediates the neurotrophic effect of fibroblast growth factor-2 on midbrain dopaminergic neurons. Eur J Neurosci 1998; 10:2746–2750.CrossRefPubMedGoogle Scholar
  39. 39.
    Ling ZD, Potter ED, Lipton JW et al. Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Exp Neurol 1998; 149:411–423.CrossRefPubMedGoogle Scholar
  40. 40.
    Branton RL, Love RM, Clarke DJ. cAMP included during cell suspension preparation improves survival of dopaminergic neurons in vitro. Neuroreport 1998;9:3223–3227.CrossRefPubMedGoogle Scholar
  41. 41.
    Rolletschek A, Chang H, Guan K et al. Differentiation of embryonic stem cell-derived dopaminergic neurons is enhanced by survival-promoting factors. Mech. Dev. 2001; 105:93–104.CrossRefPubMedGoogle Scholar
  42. 42.
    Ohmachi S, Watanabe Y, Mikami T et al. FGF-20, a novel neurotrophic factor, preferentially expressed in the substantia nigra pars compacta of rat brain. Biochem. Biophys. Res. Commun. 2000; 277:355–360.CrossRefPubMedGoogle Scholar
  43. 43.
    Murase S, McKay RD. A specific survival response in dopamine neurons at most risk in Parkinson’s disease. J Neurosci 2006; 26:9750–9760.CrossRefPubMedGoogle Scholar
  44. 44.
    Grothe C, Timmer M, Scholz T et al. Fibroblast growth factor-20 promotes the differentiation of Nurr1-overexpressing neural stem cells into tyrosine hydroxylase-positive neurons. Neurobiol. Dis. 2004; 17:163–170.CrossRefPubMedGoogle Scholar
  45. 45.
    Studer L, Tabar V, McKay RD. Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci 1998; 1:290–295.CrossRefPubMedGoogle Scholar
  46. 46.
    Hong S, Kang UJ, Isacson O et al. Neural precursors derived from human embryonic stem cells maintain long-term proliferation without losing the potential to differentiate into all three neural lineages, including dopaminergic neurons. J Neurochem 2007Google Scholar
  47. 47.
    Chung S, Shin BS, Hwang M et al. Neural precursors derived from embryonic stem cells, but not those from fetal ventral mesencephalon, maintain the potential to differentiate into dopaminergic neurons after expansion in vitro. Stem Cells 2006; 24:1583–1593.CrossRefPubMedGoogle Scholar
  48. 48.
    Chung S, Hedlund E, Hwang M et al. The homeodomain transcription factor Pitx3 facilitates differentiation of mouse embryonic stem cells into AHD2-expressing dopaminergic neurons. Mol Cell Neurosci. 2005; 28:241–252.CrossRefPubMedGoogle Scholar
  49. 49.
    Chung S, Sonntag KC, Andersson T et al. Genetic engineering of mouse embryonic stem cells by Nurr1 enhances differentiation and maturation into dopaminergic neuron. Eur J. Neurosci 2002; 16: 1829–1838.CrossRefPubMedGoogle Scholar
  50. 50.
    Martinat C, Bacci JJ, Leete T et al. Cooperative transcription activation by Nurr1 and Pitx3 induces embryonic stem cell maturation to the midbrain dopamine neuron phenotype. Proc. Natl. Acad. Sci. U. S. A. 2006; 103:2874–2879.CrossRefPubMedGoogle Scholar
  51. 51.
    Kim DW, Chung S, Hwang M et al. Stromal cell-derived inducing activity, Nurr1, and signaling molecules synergistically induce dopaminergic neurons from mouse embryonic stem cells. Stem Cells 2006; 24:557–567.CrossRefPubMedGoogle Scholar
  52. 52.
    Barberi T, Klivenyi P, Calingasan NY et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat. Biotechnol. 2003; 21:1200–1207.CrossRefPubMedGoogle Scholar
  53. 53.
    Pruszak J, Isacson O. In vitro differentiation of dopaminergic neurons in human embryonic stem cells—a practical handbook (eds. Sullivan S, Cowan C, Eggan K.) 2007Google Scholar
  54. 54.
    Brederlau A, Correia AS, Anisimov SV et al. Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells 2006; 24:1433–1440.CrossRefPubMedGoogle Scholar
  55. 55.
    Yang D, Zhang ZJ, Oldenburg M et al. Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 2008; Jan 26(1):55–63.CrossRefPubMedGoogle Scholar
  56. 56.
    Ben Hur T, Idelson M, Khaner H et al. Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells. 2004; 22:1246–1255.CrossRefGoogle Scholar
  57. 57.
    Chung S, Shin BS, Hedlund E et al. Genetic selection of sox1GFP-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. J. Neurochem 2006; 97:1467–1480.CrossRefPubMedGoogle Scholar
  58. 58.
    Zwaka TP, Thomson JA. Homologous recombination in human embryonic stem cells. Nat Biotechnol 2003; 21:319–321.CrossRefPubMedGoogle Scholar
  59. 59.
    Xia X, Ayala M, Thiede BR et al. In vitro and in vivo induced trangene expression in human embryonic stem cells and derivatives. Stem Cells 2007Google Scholar
  60. 60.
    Hochedlinger K, Jaenisch R. Nuclear reprogramming and pluripotency. Nature 2006; 441:1061–1067.CrossRefPubMedGoogle Scholar
  61. 61.
    Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131:861–872.CrossRefPubMedGoogle Scholar
  62. 62.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126:663–676.CrossRefPubMedGoogle Scholar
  63. 63.
    Wernig M, Meissner A, Foreman R et al In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007; 448:318–324.CrossRefPubMedGoogle Scholar
  64. 64.
    Yu J, Vodyanik M.A., Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318:1917–1920.CrossRefPubMedGoogle Scholar
  65. 65.
    Maherali N, Sridharan R, Xie W et al. Directly Reprogrammed Fibroblasts Show Glabal Epigenetic Remodeling and Widespread Tissue Contribution. Cell Stem Cells 2007; 1:55–70.CrossRefGoogle Scholar
  66. 66.
    Yan Y, Yang D, Zarnowska ED et al. Directed differentiation of dopaminergic neuronal subtypes from human embryonic stem cells. Stem Cells 2005; 23:781–790.CrossRefPubMedGoogle Scholar
  67. 67.
    Karki S, Pruszak J, Isacson O et al. ES cell-derived neuroepithelial cell cultures. Journal of Visualized Experiments, 2006.Google Scholar
  68. 68.
    Smidt MP, Asbreuk CH, Cox JJ et al. A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci 2000; 3:337–341.CrossRefPubMedGoogle Scholar
  69. 69.
    Maxwell SL, Li M. Midbrain dopaminergic development in vivo and in vitro from embryonic stem cells. J Anat 2005; 207:209–218.CrossRefPubMedGoogle Scholar
  70. 70.
    Prakash N, Wurst W. Genetic networks controlling the development of midbrain dopaminergic neurons. J Physiol 2006; 575:403–410.CrossRefPubMedGoogle Scholar
  71. 71.
    Prakash N, Wurst W. Development of dopaminergic neurons in the mammalian brain. Cell Mol Life Sci 2006; 63:187–206.CrossRefPubMedGoogle Scholar
  72. 72.
    Andersson E, Tryggvason U, Deng Q et al. Identification of intrinsic determinants of midbrain dopamine neurons. Cell 2006; 124:393–405.CrossRefPubMedGoogle Scholar
  73. 73.
    Ferri AL, Lin W, Mavromatakis YE et al. Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. Development 2007; 134:2761–2769.CrossRefPubMedGoogle Scholar
  74. 74.
    Ang SL. Transcriptional control of midbrain dopaminergic neuron development. Development 2006; 133:3499–3506.CrossRefPubMedGoogle Scholar
  75. 75.
    Vitalis T, Cases O, Parnavelas JG. Development of the dopaminergic neurons in the rodent brainstem. Exp Neurol 2005; 191Suppl 1:S104–S112.CrossRefPubMedGoogle Scholar
  76. 76.
    Smits SM, Ponnio T, Conneely OM et al. Involvement of Nurr1 in specifying the neurotransmitter identity of ventral midbrain dopaminergic neurons. Eur J Neurosci 2003; 18:1731–1738.CrossRefPubMedGoogle Scholar
  77. 77.
    Hedlund E, Pruszak J, Ferree A et al. Selection of embryonic stem cell-derived enhanced green fluorescent protein-positive dopamine neurons using the tyrosine hydroxylase promoter is confounded by reporter gene expression in immature cell populations. Stem Cells 2007; 25:1126–1135.CrossRefPubMedGoogle Scholar
  78. 78.
    Yoshizaki T, Inaji M, Koule H et al. Isolation and transplantation of dopaminergic neurons generated from mouse embryonic stem cells. Neurosci Lett 2004; 363:33–37.CrossRefPubMedGoogle Scholar
  79. 79.
    Shim JW, Koh HC, Chang MY et al. Enhanced in vitro midbrain dopamine neuron differentiation, dopaminergic function neurite outgrowth, and 1-methyl-4-phenylpyridium resistance in mouse embryonic stem cells overexpressing Bcl-XL. J Neurosci 2004; 24:843–852.CrossRefPubMedGoogle Scholar
  80. 80.
    Liste I, Garcia-Garcia E, Martinez-Serrano A. the generation of dopaminergic neurons by human neural stem cells is enhanced by Bcl-XL, both in vitro and in vivo. J Neurosci 2004; 24:10786–10795.CrossRefPubMedGoogle Scholar
  81. 81.
    Sonntag KC, Simantov R, Bjorklund L et al. Context-dependent neuronal differentiation and germ layer induction of Smad4-/− and Cripto-/− embryonic stem cells. Mol Cell Neurosci 2005; 28: 417–429.CrossRefPubMedGoogle Scholar
  82. 82.
    Parish CL, Parisi S, Persico MG et al. Cripto as a target for improving embryonic stem cell-based therapy in Parkinson’s disease. Stem Cells 2005; 23:471–476.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.Neuroregeneration Laboratories, Center for Neuroregeneration Research, Harvard Medical SchoolMcLean HospitalMelmontUSA

Personalised recommendations