TGF-β in Dopamine Neuron Development, Maintenance and Neuroprotection

  • Eleni Roussa
  • Oliver von Bohlen und Halback
  • Kerstin KrieglsteinEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 651)


Transforming growth factor betas (TGF-βs) are multifunctional cytokines with widespread distribution. In the nervous system the biological effects of TGF-β cover regulation of proliferation, migration, differentiation, survival and death. Specifically, the effects of TGF-β on mesencephalic DAergic neurons extend from induction and specification of the dopaminergic phenotype via promotion of survival to neuroprotection in animal models of parkinsonism. Experimental in vitro and in vivo models have contributed to a better understanding of the putative mechanisms underlying the effects of TGF-β on DAergic neurons and unravelled synergisms between members of the TGF-β superfamily. In this chapter, we will review the literature available with focus on TGF-β proper and glial cell-line-derived neurotrophic factor (GDNF).


Dopaminergic Neuron Ventral Mesencephalon DAergic Neuron Midbrain Dopaminergic Neuron Midbrain Dopamine Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roberts AB, Sporn MB. The transforming growth factor-βs. In: Sporn MB, Roberts AB, eds. Handbook of Experimental Pharmacology. Heidelberg: Springer Verlag, 1990; 95:419–472.Google Scholar
  2. 2.
    Roberts AB, Anzano MA, Lamb LC et al. New class of transforming growth factors potentiated by epidermal growth factor: isolation from nonneoplastic tissues. Proc Natl Acad Sci USA 1981; 78:5339–5343.CrossRefPubMedGoogle Scholar
  3. 3.
    Miyazono K, Suzuki H, Imamura T. Regulation of TGF-beta signaling and its roles in progression of tumors. Cancer Sci 2003; 94:230–234.CrossRefPubMedGoogle Scholar
  4. 4.
    McDonald NQ, Hendrickson WA. A structural superfamily of growth factors containing a cystine knot motif. Cell 1993; 73:421–424.CrossRefPubMedGoogle Scholar
  5. 5.
    Annes JP, Munger JS, Rifkin DB. Making sense of latent TGFbeta activation. J Cell Sci 2003; 116:217–224.CrossRefPubMedGoogle Scholar
  6. 6.
    Rifkin DB. Latent transforming growth factor-beta (TGF-beta) binding proteins: orchestrators of TGF-beta availability. J Biol Chem 2005; 280:7409–7412.CrossRefPubMedGoogle Scholar
  7. 7.
    Miyazono K, ten Dijke P, Heldin CH. TGF-beta signaling by Smad proteins. Adv Immunol 2000; 75:115–157.CrossRefPubMedGoogle Scholar
  8. 8.
    Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003; 113:685–700.CrossRefPubMedGoogle Scholar
  9. 9.
    Krieglstein K. Transforming growth factor-betas in the brain. Handbook of Neurochemistry and Molecular Neurobiology 2006:123–141.Google Scholar
  10. 10.
    Böttner M, Krieglstein K, Unsicker K. The transforming growth factor-betas: structure, signaling and roles in nervous system development and functions. J Neurochem 2000; 75:2227–2240.CrossRefPubMedGoogle Scholar
  11. 11.
    Flanders KC, Ren RF, Lippa CF. Transforming growth factor-betas in neurodegenerative disease. Prog Neurobiol 1998; 54:71–85.CrossRefPubMedGoogle Scholar
  12. 12.
    Lin LF, Doherty DH, Lile JD et al. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993; 260:1130–1132.CrossRefPubMedGoogle Scholar
  13. 13.
    Unsicker K, Suter-Crazzolara C, Krieglstein K. Neurotrophic roles of GDNF and related factors. In: Hefti F, ed. Handbook of Experimental Pharmacology 134: Neurotrophic Factors. Heidelberg: Springer, 1999:189–224.Google Scholar
  14. 14.
    Smidt MP, Burbach PH. How to make a mesodiencephalic dopaminergic neuron. Nature Rev Neurosci 2007; 8:21–32.CrossRefGoogle Scholar
  15. 15.
    Hynes M, Porter JA, Chinag C et al. Induction of midbrain dopaminergic neurons by Sonic Hedgehog. Neuron 1995a; 15:35–44.CrossRefPubMedGoogle Scholar
  16. 16.
    Hynes M, Poulsen K, Tessier-Lavigne M et al. Control of neuronal diversity by the floor plate: contact-mediated induction of midbrain dopaminergic neurons. Cell 1995b; 80:95–101.CrossRefPubMedGoogle Scholar
  17. 17.
    Hynes M, Rosenthal A. Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Curr Opin Neurobiol 1999; 9:26–36.CrossRefPubMedGoogle Scholar
  18. 18.
    Ye W, Shimamura K, Rubenstein JR et al. FGF and Shh signals control dopaminergic and serotonergic cell fate in the anterior neural plate. Cell 1998; 93:755–766.CrossRefPubMedGoogle Scholar
  19. 19.
    Crossley PH, Martinez S, Martin GR. Midbrain development induced by FGF8 in the chick embryo. Nature 1996; 380:66–68.CrossRefPubMedGoogle Scholar
  20. 20.
    Farkas LM, Dünker N, Roussa E et al. Transforming growth factor-βs are essential fort he development of midbrain dopaminergic neurons in vitro and in vivo. J Neurosci 2003; 23:5178–5186.PubMedGoogle Scholar
  21. 21.
    Holzschuh J, Hauptmann G, Driever W. Genetic analysis of the roles of Hh, FGF8 and Nodal signaling during catecholaminergic system development in the zebrafish brain. J Neurosci 2003; 23:5507–5519.PubMedGoogle Scholar
  22. 22.
    Roussa E, Wiehle M, Dünker N et al. Transforming growth factor β is required for differentiation of mouse mesencephalic progenitors into dopaminergic neurons in vitro and in vivo: ectopic induction in dorsal mesencephalon. Stem Cells 2006; 24:2120–2129.CrossRefPubMedGoogle Scholar
  23. 23.
    Roussa E, Krieglstein K. Induction and specification of midbrain dopaminergic cell: focus on SHH, FGF8 and TGF-β. Cell Tissue Res 2004; 318:23–33.CrossRefPubMedGoogle Scholar
  24. 24.
    Saucedo-Cardenas O, Quintana-Hau JD, Le WD et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic neurons. Proc Natl Acad Sci USA 1998; 95:4013–4018.CrossRefPubMedGoogle Scholar
  25. 25.
    Smidt MP, Smits SM, Bouwmeester H et al. Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene pitx3. Development 2004; 131:1145–1155.CrossRefPubMedGoogle Scholar
  26. 26.
    Simon HH, Saueressig H, Wurst W et al. Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J Neurosci 2001; 21:3126–3134.PubMedGoogle Scholar
  27. 27.
    Smidt MP, Asbreuk CH, Cox JJ et al. A second pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci 2000; 3:337–341.CrossRefPubMedGoogle Scholar
  28. 28.
    Andersson E, Tryggvason U, Deng Q et al. Identification of intrinsic determinants of midbrain dopamine neurons. Cell 2006; 124:393–405.CrossRefPubMedGoogle Scholar
  29. 29.
    Unsicker K, Meier C, Krieglstein K et al. Expression, localization and function of transforming growth factor-betas in embryonic chick spinal cord, hindbrain and dorsal root ganglia. J Neurobiol 1996; 29:262–276.CrossRefPubMedGoogle Scholar
  30. 30.
    Chiang C, Litingtung Y, Lee E et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 1996; 383:407–413.CrossRefPubMedGoogle Scholar
  31. 31.
    Reynolds BA, Weiss S. Clonal and population analysis demonstrate that an EGF-responsive mammmlian embryonic CNS precursor is a stem cell. Dev Biol 1996; 175:1–13.CrossRefPubMedGoogle Scholar
  32. 32.
    Kaslin J, Panula P. Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). J Comp Neurol 2001; 440:342–377.CrossRefPubMedGoogle Scholar
  33. 33.
    Rink E, Wullimann MF. Development of the catecholaminergic system in the early zebrafish brain: an immunohistochemical study. Brain Res Dev Brain Res 2002; 137:89–100.CrossRefPubMedGoogle Scholar
  34. 34.
    Rink E, Wullimann MF. The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res 2001; 889:316–330.CrossRefPubMedGoogle Scholar
  35. 35.
    Sampath K, Rubinstain AL, Chang AM et al. Induction of the zebrafish ventral brain and floorplate requires Cyclops/nodal signaling. Nature 1998; 395:185–189.CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang J, Talbot WS, Schier AF. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 1998; 92:241–251.CrossRefPubMedGoogle Scholar
  37. 37.
    Schauerte HE, van Eeden FJ, Fricke C et al. Sonic hedgehog is not required for the induction of medial floor plate cells in the zebrafish. Development 1998; 125:2983–299.PubMedGoogle Scholar
  38. 38.
    Varga ZM, Amores A, Lewis KE et al. Zebrafish smoothened functions in ventral neural tube specification and axon tract formation. Development 2001; 128:3497–3509.PubMedGoogle Scholar
  39. 39.
    Reifers F, Bohli H, Walsh EC et al. M Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for maintenance of midbrain-hindbrain boundary development and somitogenesis. Development 1998; 125:2381–2395.PubMedGoogle Scholar
  40. 40.
    Gripp KW, Wotton D, Edwards MC et al. Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nat Genet 2000; 25:205–208.CrossRefPubMedGoogle Scholar
  41. 41.
    Roessler E, Belloni E, Gaudenz K et al. Mutations in the human Sonic hedgehog gene cause holoprocencephaly. Nat Genet 1996; 357–360.Google Scholar
  42. 42.
    Shen J, Walsch CA. Targeted disruption of Tgif, the mouse otholog of a human holoprocencephaly gene, does not result in holoproncencephaly in mice. Mol Cel Biol 2005; 25:3639–3647.CrossRefGoogle Scholar
  43. 43.
    Airaksinen MS, Saarma M. The GDNF family: signalling, biological functions and therapeutic value. Nature Rev 2002; 3:383–394.CrossRefGoogle Scholar
  44. 44.
    Sariola H, Saarma M. Novel functions and signaling pathways for GDNF. J Cell Sci 2003; 116:3855–3862.CrossRefPubMedGoogle Scholar
  45. 45.
    Moore MW, Klein RD, Farinas I et al. Renal and neuronal abnormalities in mice lacking GDNF. Nature 1996; 382:76–79.CrossRefPubMedGoogle Scholar
  46. 46.
    Pichel JG, Shen L, Hui SZ et al. Defects in enteric innervation and kidney development in mice lacking GDNF. Nature 1996; 382:73–76.CrossRefPubMedGoogle Scholar
  47. 47.
    Sanchez MP, Silos-Santiago I, Frisen J et al. Renal agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 1996; 382:70–73.CrossRefPubMedGoogle Scholar
  48. 48.
    Tomac AC, Agulnick AD, Haughey N et al. Effects of cerebral ischemia in mice deficient in Persephin. Proc Natl Ac Sci USA 2002; 99:9521–9526.CrossRefGoogle Scholar
  49. 49.
    Heuckeroth RO, Enomoto H, Grider JR et al. Gene targeting reveals a critical role for neurturin in the development and maintenance of enteric, sensory and parasympathetic neurons. Neuron 1999; 22:253–263.CrossRefPubMedGoogle Scholar
  50. 50.
    Honma Y, Araki T, Gianino S et al. Artemin is a vascular-derived neurotrophic factor for developing sympathetic neurons. Neuron 2002; 35:267–282.CrossRefPubMedGoogle Scholar
  51. 51.
    Roussa E, Krieglstein K. GDNF promotes neuronal diffrentiation and dopaminergic development of mouse mesencephalic neurospheres. Neurosci Let 2004; 361:52–55.CrossRefGoogle Scholar
  52. 52.
    Krieglstein K, Henheik P, Farkas L et al. Glial cell line-derived neurotrophic factor requires transforming growth factor-beta for exerting its full neurotrophic potential on peripheral and CNS neurons. J Neurosci 1998; 18:9822–9834.PubMedGoogle Scholar
  53. 53.
    Schober A, Peterziel H, von Bartheld CS et al. GDNF applied to the MPTP-lesioned nigrostriatal system requires TGF-beta for its neuroprotective action. Neurobiol Dis 2007; 25:378–391.CrossRefPubMedGoogle Scholar
  54. 54.
    Krieglstein K. Factors promoting survival of mesencephalic dopaminergic neurons. Cell Tissue Res 2004; 318:73–80.CrossRefPubMedGoogle Scholar
  55. 55.
    Krieglstein K, Suter-Crazzolara C, Fischer WH et al. TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J 1995; 14:736–742.PubMedGoogle Scholar
  56. 56.
    Poulsen KT, Armanini MP, Klein RD et al. TGF beta 2 and TGF beta 3 are potent survival factors for midbrain dopaminergic neurons. Neuron 1994; 13:1245–1252.CrossRefPubMedGoogle Scholar
  57. 57.
    Chalazonitis A, Kalberg J, Twardzik DR et al. Transforming growth factor beta has neurotrophic actions on sensory neurons in vitro and is synergistic with nerve growth factor. Dev Biol 1992; 152:121–132.CrossRefPubMedGoogle Scholar
  58. 58.
    Martinou JC, Le Van Thai A, Valette A et al. Transforming growth factor beta 1 is a potent survival factor for rat embryo motoneurons in culture. Dev Brain Res 1990; 52:175–181.CrossRefGoogle Scholar
  59. 59.
    Krieglstein K, Unsicker K. Transforming growth factor-beta promotes survival of midbrain dopaminergic neurons and protects them against N-methyl-4-phenylpyridinium ion toxicity. Neuroscience 1994; 63:1189–1196.CrossRefPubMedGoogle Scholar
  60. 60.
    Roussa E, Farkas LM, Krieglstein K. TGF-β promotes survival on mesencephalic dopaminergic neurons in cooperation with Shh and FGF-8. Neurobiol Dis 2004; 16:300–310.CrossRefPubMedGoogle Scholar
  61. 61.
    Oo TF, Burke RE. The time course of developmental cell death in phenotypically defined dopaminergic neurons of the substantia nigra. Brain Res Dev Brain Res 1997; 98:191–196.CrossRefPubMedGoogle Scholar
  62. 62.
    Zhang J, Pho V, Bonasera SJ et al. Essential function of HIPK2 in TGF-beta-dependent survival of midbrain dopamine neurons. Nat Neurosci 2007; 10:77–86.CrossRefPubMedGoogle Scholar
  63. 63.
    Krieglstein K, Suter-Crazzolara C, Hotten G et al. Trophic and protective effects of growth/differentiation factor 5, a member of the transforming growth factor-beta superfamily, on midbrain dopaminergic neurons. J Neurosci Res 1995; 42:724–32.CrossRefPubMedGoogle Scholar
  64. 64.
    Jordan J, Böttner M, Schluesener HJ et al. Bone morphogenetic proteins: neurotrophic roles for midbrain dopaminergic neurons and implications of astroglial cells. Eur J neurosci 1997; 9:1699–1709.CrossRefPubMedGoogle Scholar
  65. 65.
    Strelau J, Schober A, Sullivan A et al. Growth/differentiation factor-15 (GDF-15), a novel member of the TGF-beta superfamily, promotes survival of lesioned mesencephalic dopaminergic neurons in vitro and in vivo and is induced in neurons following cortisal lesioning. J Neural Transm 2003; 65 (Suppl):197–203.Google Scholar
  66. 66.
    Beck KD, Valverde J, Alexi T et al. Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 1995; 373:339–341.CrossRefPubMedGoogle Scholar
  67. 67.
    Bowenkamp KE, Hoffman AF, Gerhardt GA et al. Glial cell line-derived neurotrophic factor supports survival of injured midbrain dopaminergic neurons. J Comp Neurol 1995; 355:479–489.CrossRefPubMedGoogle Scholar
  68. 68.
    Hoffer BJ, Hoffman A, Bowenkamp K et al. Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci Lett 1994; 182:107–111.CrossRefPubMedGoogle Scholar
  69. 69.
    Kearns CM, Gash DM. GDNF protects nigral dopamine neurons against 6-hydroxydopamine in vivo. Brain Res 1995; 672:104–111.CrossRefPubMedGoogle Scholar
  70. 70.
    Sauer H, Rosenblad C, Bjorklund A: Glial cell line-derived neurotrophic factor but not transforming growth factor beta 3 prevents delayed degeneration of nigral dopaminergic neurons following striatal 6-hydroxydopamine lesion. Proc Natl Acad Sci USA 1995; 92:8935–8939.CrossRefPubMedGoogle Scholar
  71. 71.
    Tomac A, Lindqvist E, Lin LF et al. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 1995; 373:335–339.CrossRefPubMedGoogle Scholar
  72. 72.
    Gash DM, Zhang Z, Ovadia A et al. Functional recovery in parkinsonian monkeys treated with GDNF. Nature 1996; 380:252–255.CrossRefPubMedGoogle Scholar
  73. 73.
    Kordower JH, Emborg ME, Bloch J et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 2000; 290:767–773.CrossRefPubMedGoogle Scholar
  74. 74.
    Mandel RJ, Spratt SK, Snyder RO et al. Midbrain injection of recombinant adeno-associated virus encoding rat glial cell line-derived neurotrophic factor protects nigral neurons in a progressive 6-hydroxydopamine-induced degeneration model of Parkinson’s disease in rats. Proc Natl Acad Sci USA 1997; 94:14083–14088.CrossRefPubMedGoogle Scholar
  75. 75.
    Kirik D, Rosenblad C, Bjorklund A. Preservation of a functional nigrostriatal dopamine pathway by GDNF in the intrastriatal 6-OHDA lesion model depends on the site of administration of the trophic factor. Eur J Neurosci 2000; 12:3871–3882.CrossRefPubMedGoogle Scholar
  76. 76.
    Oo TF, Kholodilov N, Burke RE. Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. J Neurosci 2003; 23:5141–5148.PubMedGoogle Scholar
  77. 77.
    Gill SS, Patel NK, Hotton GR et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003; 9:589–595.CrossRefPubMedGoogle Scholar
  78. 78.
    Slevin JT, Gash DM, Smith CD et al. Unilateral intraputamenal glial cell line-derived neurotrophic factor in patients with Parkinson disease: response to 1 year of treatment and 1 year of withdrawal. J Neurosurg 2007; 106:614–620.CrossRefPubMedGoogle Scholar
  79. 79.
    Patel NK, Bunnage M, Plaha P et al. Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol 2005; 57:298–302.CrossRefPubMedGoogle Scholar
  80. 80.
    Slevin JT, Gerhardt GA, Smith CD et al. Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line-derived neurotrophic factor. J Neurosurg 2005; 102:216–222.CrossRefPubMedGoogle Scholar
  81. 81.
    Nutt JG, Burchiel KJ, Comella CL et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 2003; 60:69–73.PubMedGoogle Scholar
  82. 82.
    Lang AE, Gill S, Patel NK et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 2006; 59:459–466.CrossRefPubMedGoogle Scholar
  83. 83.
    Sherer TB, Fiske BK, Svendsen CN et al. Crossroads in GDNF therapy for Parkinson’s disease. Mov Disord 2006; 21:136–41.CrossRefPubMedGoogle Scholar
  84. 84.
    Krieglstein K, Unsicker K. distinct modulatory actions of TGF-beta and LIF on neurotrophin-mediated survival of developing sensory neurons. Neurochem Res 1996; 21:843–50.CrossRefPubMedGoogle Scholar
  85. 85.
    Peterziel H, Unsicker K, Krieglstein K. TGFß induces GDNF responsiveness in neurons by recruitment of GFRα1 to the plasma membrane. J Cell Biol 2002; 159:157–167.CrossRefPubMedGoogle Scholar
  86. 86.
    Peterziel H, Paech T, Strelau J et al. Specificity in the crosstalk of TGFß/GDNF family members is determined by distinct GFR alpha receptors. J Neurochem Online Accepted Articles Accepted article online: 2007 doi: 10.1111/j.1471-4159.2007.04962.x.Google Scholar
  87. 87.
    Lindholm P, Voutilainen MH, Lauren J et al. Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature 2007; 448:73–77.CrossRefPubMedGoogle Scholar
  88. 88.
    Petrova P, Raibekas A, Pevsner J et al. MANF: a new mesencephalic, astrocyte-derived neurotrophic factor with selectivity for dopaminergic neurons. J Mol Neurosci 2003; 20:173–188.CrossRefPubMedGoogle Scholar
  89. 89.
    Petrova PS, Raibekas A, Pevsner J et al. Discovering novel phenotype-selective neurotrophic factors to treat neurodegenerative diseases. Prog Brain Res 2004; 146:168–183.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Eleni Roussa
    • 1
    • 2
  • Oliver von Bohlen und Halback
    • 1
    • 2
  • Kerstin Krieglstein
    • 1
    Email author
  1. 1.Institute for Anatomy and Cell Biology, Department of Molecular EmbryologyUniversity of FreiburgFreiburgGermany
  2. 2.Interdisciplinary Center for Neurosciences NeuroanatomyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations