Preconditioning in Human Muscle and Myocytes

  • Cornelia S. Carr
  • Derek M. Yellon
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 194)


When the heart is subjected to brief periods of sublethal ischemia separated by reperfusion it becomes resistant to a more prolonged lethal ischemic insult, a phenomenon which has been shown to protect it against infarction, reperfusion arrhythmias, contractile dysfunction and contracture.1-4 This endogenous protective mechanism has been termed ischemic preconditioning,1 and appears to occur in all animal species studied,2,5-7 including man.8,9 The protection produced by ischemic preconditioning is very potent but is short lived and decreases with time, lasting for an hour in most species. However a delayed or second window of protection (SWOP) has also been observed as a consequence of ischemic preconditioning; this protection occurs many hours after the sublethal preconditioning ischemia.10-14 The underlying mechanisms via which ischemic preconditioning protects the heart have been partly characterised in both animals and in the human, and appears to involve adenosine receptor activation, protein kinase C mediation and the possible opening of ATP-dependent-potassium (KATP) channels. If the exact mechanism of preconditioning in man could be determined, then it might be possible to develop preconditioning-like pharmacological therapies for patients at risk of certain cardiovascular disorders.


Adenosine Receptor Human Muscle Hypoxic Precondition Ischaemic Precondition Endogenous Protective Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murry CE, Jennings RB, Reimer KA. Preconditioning with ischaemia: a delay of lethal cell injury in ischaemic myocardium. Circulation 1986;74(5): 1124–1136.PubMedCrossRefGoogle Scholar
  2. 2.
    Asimakis GK, Inners-McBride K, Medelin G et al. Ischaemic preconditioning attenuates acidosis and postischaemic dysfunction in isolated rat heart. Am J Physiol 1992;32(3):H887–H892.Google Scholar
  3. 3.
    Shiki K, Hearse DJ. Preconditioning of ischaemic myocardium: Reperfusion-induced arrhythmias. Am J Physiol 1987;253:H1470–H1476.PubMedGoogle Scholar
  4. 4.
    Cohen M, Liu G, Downey J. Preconditioning causes improved wall motion as well as smaller infarcts after transient coronary occlusion in rabbits. Circulation 1991;84:341–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Downey JM, Liu GS, Thornton JD. Adenosine and the anti-infarct effects of preconditioning. Cardiovas Res 1993;27:3–8.CrossRefGoogle Scholar
  6. 6.
    Murry CE, Richard VJ, Reimer KA et al. Ischaemic preconditioning slows energy metabolism and delays ultrastructurai damage during a sustain ischaemic episode. Circulation Res 1990;66:913–931.PubMedCrossRefGoogle Scholar
  7. 7.
    Kida M, Yokota R, Tanaka M. Effect of ischaemic preconditioning on energy metabolism during short sustained ischaemia and reperfusion in pig hearts. J Moll Cell Cardiol 1992;24(Suppl 1I):11–55.Google Scholar
  8. 8.
    Tomai F, Crea F, Gaspardone A et al. Ischaemic preconditioning during coronary angioplasty is prevented by glibenclamide, a selective ATP-sensitive K+ channel blocker. Circulation 1994;90(2):700–705.PubMedCrossRefGoogle Scholar
  9. 9.
    Yellon DM, Alkhulaifi AM, Pugsley WB. Preconditioning the human myocardium. The Lancet 1993;342(July 31):276–277.CrossRefGoogle Scholar
  10. 10.
    Sun JZ, Tank XL, Knowlton AA et al. Late preconditioning against myocardial stunning. An endogenous protective mechanism that confers resistance to postischaemic dysfunction 24 hour after brief ischaemia in conscious dogs. J Clin Invest 1995;95(l):388–403, 1995.PubMedCrossRefGoogle Scholar
  11. 11.
    Vegh A, Papp JG, Parratt JR. Prevention by dexamethasone of the marked antiarrhythmic effects of preconditioning induced 20 hour after rapid cardiac pacing. Br J Pharmacol 1994; 113:1081–1082.PubMedCrossRefGoogle Scholar
  12. 12.
    Marber MS, Latchman DS, Walker JM et al. Cardiac stress protein elevation 24 hours following brief ischaemia or heat stress is associated with resistance to myocardial infarction. Circulation 1993;88(3):1264–1272.PubMedCrossRefGoogle Scholar
  13. 13.
    Kuzuya T, Hoshida S, Yamashita N et al. Delayed effects of sublethal ischaemia on the acquisition of tolerance to ischaemia. Circ Res 1993;72(6): 1293–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Yellon DM, Baxter GF. A “second window of protection” or delayed preconditioning phenomenon: future horizons for myocardial protection? J Mol Cell Cardiol 1995;27:1023–1034.PubMedCrossRefGoogle Scholar
  15. 15.
    Deutsch E, Berger M, Kussmaul W et al. Adaptation to ischaemia during percutaneous transluminal coronary angioplasty: clinical, haemodynamic, and metabolic features. Circulation 1990;82:2044–2051.PubMedCrossRefGoogle Scholar
  16. 16.
    Tomai F, Crea F, Gaspardone A et al. Mechanisms of cardiac pain during coronary angioplasty. Journal American College Cardiology 1993;22(7): 1892–1896.CrossRefGoogle Scholar
  17. 17.
    Cribier A, Lorsatz L, Koning R et al. Improved myocardial ischaemic response and enhanced collateral circulation with long repetitive coronary occlusion during angioplasty: a prospective study. J Am Coll Cardiol 1992;20(3):578–86.PubMedCrossRefGoogle Scholar
  18. 18.
    Ottani F, Galvani M, Ferrini D et al. Prodromal angina limits infarct size: a role for ischaemic preconditioning. Circulation 1995;91:291–297.PubMedCrossRefGoogle Scholar
  19. 19.
    Kloner R, Shook T, Przyklenk K et al. Previous angina alters in-hospital outcome in TIMI4: c clinical correlate to preconditioning? Circulation 1995;91:37–47.PubMedCrossRefGoogle Scholar
  20. 20.
    Cupples L, Gagnon D, Wong N et al. Pre-existing cardiovascular conditions and long-term prognosis after initial myocardial infarction: the Framingham Study. Am Heart J 1993;125:863–72.PubMedCrossRefGoogle Scholar
  21. 21.
    Barbash G, White H, Modan M et al. Antecedent angina pectoris predicts worse outcome after myocardial infarction in patients receiving thrombolytic therapy: experience gleaned from the international tissue plasminogen activator/streptokinase mortality trial. J Am Coll Cardiol 1992;20(l):36–41.PubMedCrossRefGoogle Scholar
  22. 22.
    Joy M, Caims A, Springings D. Observations on the warm up phenomenon in angina pectoris. British Heart Journal 1987;58:116–21.PubMedCrossRefGoogle Scholar
  23. 23.
    Okazaki Y, Kodama K, Sato H et al. Attenuation of increased regional myocardial oxygen consumption during exercise as a major cause of warm-up phenomenon. J Am Coll Cardiol 1993;21:1597–604.PubMedCrossRefGoogle Scholar
  24. 24.
    Wayne E, Laplace L. Observations on angina of effort. Clin Sci 1:103–29, 1993.Google Scholar
  25. 25.
    Alkhulaifi A, Yellon D, Pugsley W. Preconditioning the human heart during aortocoronary bypass surgery. Eur J Cardio-thoracic Surg 1994;8:270–276.CrossRefGoogle Scholar
  26. 26.
    Reimer KA, Murry CE, Yamasawa I et al. Four brief periods of ischaemia causes no cumulative ATP loss or necrosis. Am J Physiol 1986;251 (Heart Circulation Physiology):H1306–1315.PubMedGoogle Scholar
  27. 27.
    Jenkins D, Pugsley W, Kemp M et al. Ischaemic preconditioning reduces troponin-T release in patients undergoing cardiac surgery. Heart 1996.Google Scholar
  28. 28.
    Walker D, Walker J, Pugsley W et al. Preconditioning in isolated superfused human muscle. J Mol Cell Cardiol 1995;27:l–9.CrossRefGoogle Scholar
  29. 29.
    Speechly-Dick ME, Grover GJ, Yellon DM. Does ischaemic preconditioning in the human involve Protein Kinase C and the ATP-dependent K+ channel? Studies of contractile function following simulated ischaemia in an atrial in vitro model. Circ Res 1995;77(5):1030–1035.PubMedCrossRefGoogle Scholar
  30. 30.
    Ovize M, Przyklenk K, Hale S et al. Preconditioning does not attenuate myocardial stunning. Circulation 1992;85:2247–2254.PubMedCrossRefGoogle Scholar
  31. 31.
    Lasley R, Anderson G, Mentzer R. Ischaemic and hypoxic preconditioning enhance postischaemic recovery of function in the rat heart. Cardiovasc Res 1993;27:565–70.PubMedCrossRefGoogle Scholar
  32. 32.
    Webster K, Discher D, Bishopric N. Cardioprotection in an in vitro model of hypoxic preconditioning. J Mol Cell Cardiol 1995;27:453–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Jenkins D, Pugsley W, Yellon D. Ischaemic preconditioning in a model of global ischaemia: infarct size limitation, but no reduction of stunning. J Mol Cell Cardiol 1995;27:1623–1632.PubMedCrossRefGoogle Scholar
  34. 34.
    Carr C, Grover G, Yellon D. Comparison of ischaemic preconditioning and a highly selective ATP-dependent potassium channel opener in isolated human atrial muscle. Heart 1996; In press.Google Scholar
  35. 35.
    Wollmering M, Fullerton D, Walther J et al. Preconditioning protects function and viability in human ventricle. Circulation 1994;90(Abstract Suppl):I–477.Google Scholar
  36. 36.
    Ikonomidis J, Tumiati L, Weisel R et al. Preconditioning human ventricular cardiomyocytes with brief periods of simulated ischaemia. Cardiovascular Research 1994;28:1285–1291.PubMedCrossRefGoogle Scholar
  37. 37.
    Curry B, Gross G, Baker J. Role of KATP channels in a rabbit model of chronic myocardial hypoxia. Circulation 1995;92(8(SuppI)):1–252(No 1204).CrossRefGoogle Scholar
  38. 38.
    Ytrehus K, Liu Y, Downey J. Preconditioning protects ischaemic rabbit myocardium by protein kinase C activation. Am J Physiol 1994;266:H1145–52.PubMedGoogle Scholar
  39. 39.
    Auchampach J, Grover G, Gross G. Blockage of ischaemic preconditioning in dogs by the novel ATP-dependent potassium channel antagonist sodium 5-hydroxydecanoate. Cardiovasc Res 1992;26:1054–62.PubMedCrossRefGoogle Scholar
  40. 40.
    Gross GJ, Auchampach JA. Blockage of ATP-sensitive potassium channels prevents myocardial preconditioning in dogs. Circ Res 1992;70:223–233.PubMedCrossRefGoogle Scholar
  41. 41.
    Tomai F, Crea F, Gaspardone A et al. Blockade of Al adenosine receptors prevents myocardial preconditioning in man. European Heart J 1994;15(Suppl):553.Google Scholar
  42. 42.
    Ikonomidis J, Shirai T, Weisel R et al. Human cardiomyocyte preconditioning is adenosine Al receptor dependent. Circulation 1994;90:I–477.Google Scholar
  43. 43.
    Taggart P, Sutton P, Oliver R et al. Ischaemic preconditioning may activate potassium ATP channels in humans? [abstract]. Circulation 1993;88(Suppl I(Pt 2)): 1–569.Google Scholar
  44. 44.
    Heidbuchel H, Vereecke J, Carmeliet E. Three different potassium channels in human atrium: contribution to the basal potassium conductance. Circulation Research 1990;66(5): 1277–1286.PubMedCrossRefGoogle Scholar
  45. 45.
    Bohm M, Pieske B, Ungerer M et al. Characterization of Al Adenosine receptors in atrial and ventricular myocardium from diseased human hearts. Circulation Research 1989;65(5): 1201–1211.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Cornelia S. Carr
  • Derek M. Yellon

There are no affiliations available

Personalised recommendations