Genes and Gene Complexes

  • E. B. Lewis


Mendel was ahead of his time, but he was not so far ahead that he could not arrive at the first great generalizations of genetics—his first and second laws. How fortunate that Mendel did not discover linkage, for he might then have failed to deduce the second law. How fortunate, too, that Mendel, by having chosen to work on peas, failed to discover “gene conversion,” not to mention “meiotic drive,” for he might then have failed to deduce even the first law.


Beta Chain Land Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ahmed A., Case M., and Giles N. H., 1964. The nature of complementation among mutants in the histidine-3 region of Neurospora crassa. Brookhaven Symp. Biol. 17: 53–65.PubMedGoogle Scholar
  2. Aksoy M., and Lehmann H., 1957. The first observation of sickle-cell hemoglobin E disease. Nature 179: 1248–1249.PubMedCrossRefGoogle Scholar
  3. Ames B. N., and Hartman P. E., 1963. The histidine operon. Cold Spring Harbor Symp. Quant. Biol. 28: 349–356.CrossRefGoogle Scholar
  4. Ames B. N., Hartman P. E., and Jacob F., 1963. Chromosomal alterations affecting the regulation of histidine biosynthetic enzymes in Salmonella. J. Mol. Biol. 7: 23–42.PubMedCrossRefGoogle Scholar
  5. Ames B. N., and Martin R. C., 1964. Biochemical aspects of genetics: The operon. Ann. Rev. Biochem. 33: 235–258.PubMedCrossRefGoogle Scholar
  6. Baglioni C., 1962. The fusion of two peptide chains in hemoglobin Lepore and its interpretation as a genetic deletion. Proc. Nat. Acad. Sci. U.S. 48: 1880–1886.CrossRefGoogle Scholar
  7. Baglioni C., 1963, Correlations between genetics and chemistry of human hemoglobins. Molecular Genetics, pp. 405–475. Edited by **J. H. Taylor. Academic Press New York.Google Scholar
  8. Barratt R. W., 1961. Studies on gene-protein relations with glutamic dehydrogenase in Neurospora crassa. Genetics 46: 849–850.Google Scholar
  9. Benzer S., 1955. Fine structure of a genetic region in bacteriophage. Proc. Nat. Acad. Sci. U.S. 41: 344–354.CrossRefGoogle Scholar
  10. Benzer S., 1957. The elementary units of heredity. The Chemical Basis of Heredity, pp. 70–93. Edited by **W. D. McElroy and B. Glass. The Johns Hopkins Press Baltimore.Google Scholar
  11. Benzer S., and Champe S. P., 1962. A change from nonsense to sense in the genetic code. Proc. Nat. Acad. Sci. U.S. 48: 1114–1121.CrossRefGoogle Scholar
  12. Boyer J., Rucknagel L., Weatherall J., and Watson-Williams E. J., 1963. Further evidence for linkage between the β and δ loci governing human hemoglobin and the population dynamics of linked genes. Amer. J. Human Genet. 15: 438–447.Google Scholar
  13. Bridges C. B., 1935. Salivary chromosome maps. J. Hered. 26: 60–64.Google Scholar
  14. Bridges C. B., 1936. The Bar “gene,” a duplication. Science 83: 210–211.PubMedCrossRefGoogle Scholar
  15. Bridges C. B., and Brehme K. S., 1944. The mutants of Drosophila melanogaster. Carnegie Inst.Wash. Publ. No. 552.Google Scholar
  16. Brink R. A., 1932. Are the chromosomes aggregates of groups of physiologically interdependent genes? Amer. Natur. 66: 444–451.CrossRefGoogle Scholar
  17. Brody S., and Yanofsky C., 1963. Suppressor gene alteration of protein primary structure. Proc. Nat. Acad. Sci. U.S. 50: 9–16.CrossRefGoogle Scholar
  18. Carlson E. A., 1959a. Allelism, complementation, and pseudoallelism at the dumpy locus in Drosophila melanogaster. Genetics 44: 348–373.Google Scholar
  19. Carlson E. A., 1959b. Comparative genetics of complex loci. Quart. Rev. Biol. 34: 33–67.PubMedCrossRefGoogle Scholar
  20. Catcheside D. G., and Overton A., 1958. Complementation between alleles in heterocaryons. Cold Spring Harbor Symp. Quant. Biol. 23: 137–140.PubMedCrossRefGoogle Scholar
  21. Ceppellini R., 1959. Discussion. Ciba Foundation Symposium, Biochemistry of Human Genetics, p. 135. Edited by G. E. W. Wolstenholme and C. M. O’Connor. Little, Brown and Co., Boston.Google Scholar
  22. Chovnick A., 1961. The garnet locus in Drosophila melanogaster. I. Pseudoallelism. Genetics 46: 493–507.PubMedGoogle Scholar
  23. Chovnick A., Schalet A., Kernaghan R. P., and Krauss M., 1964. The rosy cistron in Drosophila melanogaster: Genetic fine structure analysis. Genetics 50: 1245–1259.PubMedGoogle Scholar
  24. Crick F. H. C., Barnett L., Brenner S., and Watts-Tobin R. J., 1961. General nature of the genetic code for proteins. Nature 192: 1227–1232.PubMedCrossRefGoogle Scholar
  25. Douglas H. D., and Hawthorne D. C., 1964. Enzymatic expression and genetic linkage of genes controlling galactose utilization in Saccharomyces. Genetics 49: 837–844.PubMedGoogle Scholar
  26. Dunn L. C., 1956. Analysis of a complex gene in the house mouse. Cold Spring Harbor Symp. Quant. Biol. 21: 187–195.PubMedCrossRefGoogle Scholar
  27. Dunn L. C., and Caspari E., 1945. A case of neighboring loci with similar effects. Genetics 30: 543–568.Google Scholar
  28. Edgar R. S., and Epstein R. H., 1965. Conditional lethal mutations in bacteriophage T4. Genetics Today, vol. 2, pp. 2–16. Edited by S. J. Geerts. Proc. XI Int. Congr. Genet., The Hague, The Netherlands. Pergamon Press OxfordGoogle Scholar
  29. Epstein R. H., Bolle A., Steinberg C. M., Kellenberger E., Boy de la Tour E., Chevalley R., Edgar R. S., Susman M., Denhardt G. H., and Lielausis A., 1963. Physiological studies of conditional lethal mutants of bacteriophage T4D. Cold Spring Harbor Symp. Quant. Biol. 28: 375–394.CrossRefGoogle Scholar
  30. Fincham J. R. S., and Coddington A., 1963. The mechanism of complementation between am mutants of Neurospora crassa. Cold Spring Harbor Symp. Quant. Biol. 28: 517–527.CrossRefGoogle Scholar
  31. Fincham J. R. S., and Pateman J. A., 1957. Formation of an enzyme through complementary action of mutant “alleles” in separate nuclei in a heterocaryon. Nature 179: 741–742.PubMedCrossRefGoogle Scholar
  32. Forrest H. S., Glassman E., and Mitchell H. K., 1956. Conversion of 2-amino-4-hydroxy-pteridine to isoxanthopterin in Drosophila melanogaster. Science 124: 725–726.PubMedCrossRefGoogle Scholar
  33. Freese E., 1963. Molecular mechanism of mutations. Molecular Genetics, pp. 207–269. Edited by J. H. Taylor. Academic Press New York.Google Scholar
  34. Gans M., 1953. Etude genetique et physiologique du mutant z de Drosophila melanogaster. Bull. biol. France et Belg., Suppl. No. 38, 1–90.Google Scholar
  35. Giles N. H., Case M. E., and Partridge C. W. H., 1965. Evidence for an aromatic (arom) operon in Neurospora crassa. Genetics 52: 444–445.Google Scholar
  36. Giles N. H., Partridge C. W. H., and Nelson N. J., 1957. The genetic control of adenylsuccinase in Neurospora crassa. Proc. Nat. Acad. Sci. U.S. 43: 305–317.CrossRefGoogle Scholar
  37. Green M. M., 1959. Spatial and functional properties of pseudoalleles at the white locus in Drosophila melanogaster. Heredity 13: 302–315.CrossRefGoogle Scholar
  38. Green M. M., 1963. Pseudoalleles and recombination in Drosophila. Methodology in Basic Genetics, pp. 279–290. Edited by W. J. Burdette. Holden-Day San Francisco.Google Scholar
  39. Green M. M., 1965. Genetic fine structure in Drosophila. Genetics Today, vol. 2, pp. 37–49. Edited by S. J. Geerts. cfProc. XI Int. Congr. Genet., The Hague, The Netherlands. Pergamon Press Oxford.Google Scholar
  40. Green M. M., and Green K. C., 1949. Crossing-over between alleles at the lozenge locus in Drosophila melanogaster. Proc. Nat. Acad. Sci. U.S. 35: 586–591.CrossRefGoogle Scholar
  41. Green M. M., and Green K. C., 1956. A cytogenetic analysis of the lozenge pseudoalleles in Drosophila. Z. Induktive Abstammungs-u. Vererbungslehre 87: 708–721.Google Scholar
  42. Hartman P. E., Hartman Z., and Šerman D., 1960. Complementation mapping by abortive transduction of histidine-requiring Salmonella mutants. J. Gen. Microbiol. 22: 354–368.PubMedGoogle Scholar
  43. Hawthorne D. C., and Mortimer R. K., 1960. Chromosome mapping in Saccharomyces: Centromere-linked genes. Genetics 45: 1085–1110.PubMedGoogle Scholar
  44. Herzenberg L. A., 1964. A chromosome region for gamma2a and beta2A globulin H chain isoantigens in the mouse. Cold Spring Harbor Symp. Quant. Biol. 29: 455–462.PubMedCrossRefGoogle Scholar
  45. Hexter W. M., 1958. On the nature of the garnet locus in Drosophila melanogaster. Proc. Nat. Acad. Sci. U.S. 44: 768–771.CrossRefGoogle Scholar
  46. Holliday R, 1964. A mechanism for gene conversion in fungi. Genet. Res. 5: 282–304.CrossRefGoogle Scholar
  47. Horowitz N. H., 1965. The evolution of biochemical synthesis—retrospect and prospect. Evolving Genes and Proteins, pp. 15–23. Edited by V. Bryson and H. V. Vogel. Academic Press New York.Google Scholar
  48. Horowitz N. H., and Metzenberg R. L., 1965. Biochemical aspects of genetics. Ann. Rev. Biochem. 34: 527–564.PubMedCrossRefGoogle Scholar
  49. Horton B. F., and Huisman H. J., 1963. Linkage of the β-chain and δ-chain structural genes of human hemoglobins. Amer. J. Human Genet. 15: 394–397.Google Scholar
  50. Hunt J. A. and Ingram V. M., 1959. The genetic control of protein structure: The abnormal human haemoglobins. Ciba Foundation Symposium, Biochemistry of Human Genetics, pp. 114–143. Edited by G. E. W. Wolstenholme and C. M. O’Conner. J. & A. Churchill, Ltd. London.Google Scholar
  51. Ingram V. M., 1961. Gene evolution and the haemoglobins. Nature 189: 704–708.PubMedCrossRefGoogle Scholar
  52. Ingram V. M., and Stretton A. O. W., 1961. Human haemoglobin A2: Chemistry, genetics and evolution. Nature 190: 1079–1084.PubMedCrossRefGoogle Scholar
  53. Jacob F., and Monod J., 1961. On the regulation of gene activity. Cold Spring Harbor Symp. Quant. Biol. 26: 193–211.CrossRefGoogle Scholar
  54. Judd B. H., 1959. Studies on some position pseudoalleles at the white region in Drosophila melanogaster. Genetics 44: 34–42.PubMedGoogle Scholar
  55. Judd B. H., 1964. The structure of intralocus duplication and deficiency chromosomes produced by recombination in Drosophila melanogaster, with evidence for polarized pairing. Genetics 49: 253–265.PubMedGoogle Scholar
  56. Laughnan J. R., 1961. The nature of mutations in terms of gene and chromosomal changes. Mutation and Plant Breeding, pp. 3–29. Nat. Acad. Sci., Nat. Res. Council, Washington, D.C., Publ. No. 891.Google Scholar
  57. Lewis E. B., 1951. Pseudoallelism and gene evolution. Cold Spring Harbor Symp. Quant. Biol. 16: 159–174.PubMedCrossRefGoogle Scholar
  58. Lewis E. B., 1952. Pseudoallelism of white and apricot in Drosophila melanogaster. Proc. Nat. Acad. Sci. U.S. 38: 953–961.CrossRefGoogle Scholar
  59. Lewis E. B., 1954. The theory and application of a new method of detecting chromosomal rearrangements in Drosophila melanogaster. Amer. Natur. 88: 225–239.CrossRefGoogle Scholar
  60. Lewis E. B., 1955. Some aspects of position pseudoallelism. Amer. Natur. 89: 73–89.CrossRefGoogle Scholar
  61. Lewis E. B., 1956. An unstable gene in Drosophila melanogaster. Genetics 41: 651.Google Scholar
  62. Lewis E. B., 1963. Genes and developmental pathways. Amer. Zool. 3: 33–56.Google Scholar
  63. Lewis E. B., 1964. Genetic control and regulation of developmental pathways. Role of Chromosomes in Development, pp. 231–252. Edited by M. Locke. Academic Press New York.CrossRefGoogle Scholar
  64. MacKendrick E. M., and Pontecorvo G., 1952. Crossing over between alleles at the w locus in Drosophila melanogaster. Experientia 8: 390.PubMedCrossRefGoogle Scholar
  65. Mitchell M. B., 1955. Aberrant recombination in Neurospora. Proc. Nat. Acad. Sci. U.S. 41: 935–937.CrossRefGoogle Scholar
  66. Muller H. J., 1922. Variation due to change in the individual genes. Amer. Natur. 56: 32–50.CrossRefGoogle Scholar
  67. Muller H. J., 1935. A viable two-gene deficiency phaenotypically resembling the corresponding hypomorphic mutations. J. Hered. 26: 469–478.Google Scholar
  68. Muller H. J., Prokofjeva-Belgovskaja A. A., and Kossikov K. V., 1936. Unequal crossing over in the bar mutant as a result of duplication of a minute chromosomal section. Compt. Rend. Acad. Sci. U.S.S.R. 2: 87–88.Google Scholar
  69. Murray N. E., 1963. Polarized recombination and fine structure within the me-2 gene of Neurospora crassa. Genetics 48: 1163–1183.PubMedGoogle Scholar
  70. Nelson O. E., 1962. The waxy locus in maize. I. Intralocus recombination frequency estimates by pollen and by conventional analyses. Genetics 47: 737–742.PubMedGoogle Scholar
  71. Nelson O. E., and Tsai C. Y., 1964. Glucose transfer from adenosine diphosphate-glucose to starch in preparations of waxy seeds. Science 145: 1194–1195.PubMedCrossRefGoogle Scholar
  72. Nirenberg M., Leder P., Bernfield M., Brimacombe R., Trupin J., Rottman F., and ’Neal C. O., 1965. RNA codewords and protein synthesis. VII. On the general nature of the RNA code. Proc. Nat. Acad. Sci. U.S. 53: 1161–1168.CrossRefGoogle Scholar
  73. Notani G.W., Engelhardt D. L., Konigsberg W. K., and Zinder N. D., 1965. Suppression of a coat protein mutant of the bacteriophage f2. J. Mol. Biol. 12: 439–447.PubMedCrossRefGoogle Scholar
  74. Oliver C. P., 1940. A reversion to wild type associated with crossing over in Drosophila melanogaster. Proc. Nat. Acad. Sci. U.S. 26: 452–454.CrossRefGoogle Scholar
  75. Peterson H. L., and Laughnan J. R., 1963. Intrachromosomal exchange at the bar locus in Drosophila. Proc. Nat. Acad. Sci. U.S. 50: 126–133.CrossRefGoogle Scholar
  76. Raffel D., and Muller H. J., 1940. Position effect and gene divisibility considered in connection with three strikingly similar scute mutations. Genetics 25: 541–583.PubMedGoogle Scholar
  77. Rizet G., Lissouba P., and Mousseau J., 1960. Les mutations d’ascopores chez l’ascomycéte Ascobolus immersus et l’analysis de la structure fine des génes. Bull. soc. franç. physiol. vegetale 6: 175–193.Google Scholar
  78. Rudkin G. T., 1965. The relative mutabilities of DNA in regions of the X chromosome of Drosophila melanogaster. Genetics 52: 665–681.PubMedGoogle Scholar
  79. Schroeder W. A., Shelton J. R., Shelton J. B., Cormick J., and Jones R. T., 1963. The amino acid sequence of the γ chain of human fetal hemoglobin. Biochemistry 2: 992–1008.PubMedCrossRefGoogle Scholar
  80. Smithies O., 1964. Chromosomal rearrangements and protein structure. Cold Spring Harbor Symp. Quant. Biol. 29: 309–319.Google Scholar
  81. Smithies O., Connell G. E., and Dixon G. H., 1962. Chromosomal rearrangement and the evolution of haptoglobin genes. Nature 196: 232–236.PubMedCrossRefGoogle Scholar
  82. Southin J. L., and Carlson E. A., 1962. Comparison of micromaps obtained by direct and indirect methods of recombination in the dumpy region of Drosophila melanogaster. Genetics 47: 1017–1026.PubMedGoogle Scholar
  83. Stadler D. R., and Towe A. M., 1963. Recombination of allelic cysteine mutants in Neurospora. Genetics 48: 1323–1344.PubMedGoogle Scholar
  84. Stadler D. R., Towe A. M., and Murray N., 1965. Intragenic and intergenic recombination in Neurospora. Genetics 52: 477.Google Scholar
  85. Stadler L. J., 1954. The gene. Science 120: 811–819.PubMedCrossRefGoogle Scholar
  86. Stadler L. J., and Emmerling M. H., 1956. Relation of unequal crossing over to the interdependence of R′ elements (P) and (S). Genetics 41: 124–137.PubMedGoogle Scholar
  87. Stadler L. J., and Nuffer M. G., 1953. Problems of gene structure. II. Separation of R′ elements (S) and (P) by unequal crossing over. Science 117: 471–472.Google Scholar
  88. Stephens S. G., 1951. Possible significance of duplication in evolution. Advance. Genet. 4: 247–267.PubMedCrossRefGoogle Scholar
  89. Stretton A.O.W., and Brenner S., 1965. Molecular consequences of the ambermutation and its suppression. J. Mol. Biol. 12: 456–465.PubMedCrossRefGoogle Scholar
  90. Sturtevant A. H., 1925. The effects of unequal crossing over at the Bar locus in Drosophila. Genetics 10: 117–147.PubMedGoogle Scholar
  91. Weigert M. G., and Garen A., 1965. Amino acid substitution resulting from suppression of nonsense mutations. I. Serine insertion by the Su-1 suppressor gene. J. Mol. Biol. 12: 448–455.PubMedCrossRefGoogle Scholar
  92. Welshons W. J., 1958. The analysis of a pseudoallelic recessive lethal system at the notch locus of Drosophila melanogaster. Cold Spring Harbor Symp. Quant. Biol. 23: 171–176.PubMedCrossRefGoogle Scholar
  93. Welshons W. J., and von Halle E. S., 1962. Pseudoallelism at the notch locus in Drosophila. Genetics 47: 743–759.PubMedGoogle Scholar
  94. Whitehouse H. L. K., 1963. A theory of crossing over by means of hybrid deoxyribonucleic acid. Nature 199: 1034–1040.PubMedCrossRefGoogle Scholar
  95. Whitehouse H. L. K., and Hastings D. J., 1965. The analysis of genetic recombination on the polaron hybrid DNA model. Genet. Res. 6: 27–92.CrossRefGoogle Scholar
  96. Woodward D. O., 1959. Enzyme complementation in vitro between adenyl-succinaseless mutants of Neurospora crassa. Proc. Nat. Acad. Sci. U.S. 45: 846–850.CrossRefGoogle Scholar
  97. Yanofsky C., 1963. Amino acid replacements associated with mutation and recombination in the A gene and their relationship to in vitro coding data. Cold Spring Harbor Symp. Quant. Biol. 28: 581–588.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1967

Authors and Affiliations

  • E. B. Lewis

There are no affiliations available

Personalised recommendations