Advertisement

Pseudoallelism and Gene Evolution

  • E. B. Lewis
Chapter
  • 217 Downloads

Abstract

It is the purpose of this paper to consider some of the ways in which “pseudoalleles” (McClintock, 1944), or closely linked genes having similar effects, may provide clues to the mode of origin of new kinds of genes.Our underlying thesis will be that in those instances of pseudoallelism in which there is evidence for close functional similarity among the component genes we may come close to seeing the direct results of a process which produces new genes.

Keywords

Osition Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonner D. M., 1950, The Q locus of Neurospora. Genetics 35: 655–656 (abstract).Google Scholar
  2. Bridges C. B., 1935, Salivary chromosome maps. J. Hered. 26: 60–64.Google Scholar
  3. Bridges C. B., and Brehme K. S., 1944, The mutants of Drosophila melanogaster. Publ. Carneg. Instn. 552.Google Scholar
  4. Dobzhansky T., 1930, The manifold effects of the genes Stubble and stubbloid in Drosophila melanogaster. Zeit. indukt. Abstam. u-Vererb-Lehre 54: 427–457.Google Scholar
  5. Dunn L. C., and Caspari E., 1942, Close linkage between mutations with similar effects. Proc. Nat. Acad. Sci., Wash. 28: 205–210.CrossRefGoogle Scholar
  6. Dunn L. C., and Caspari E., 1945, A case of neighboring loci with similar effects. Genetics 30: 543–568.Google Scholar
  7. Ephrussi B., and Sutton E., 1944, A reconsideration of the mechanism of position effect. Proc. Nat. Acad. Sci., Wash. 30: 183–197.CrossRefGoogle Scholar
  8. Green M. M., and Green, K. C., 1949, Crossing-over between alleles at the lozenge locus in Drosophila melanogaster. Proc. Nat. Acad. Sci., Wash. 35: 586–591.CrossRefGoogle Scholar
  9. Horowitz N. H., 1950, Biochemical genetics of Neurospora. Advances in Genetics 3: 33–71.PubMedCrossRefGoogle Scholar
  10. Houlahan M. B., Beadle G. W., and Calhoun H. G., 1949, Linkage studies with biochemical mutants of Neurospora crassa. Genetics 34: 493–507.PubMedGoogle Scholar
  11. Komai T., and Takaku T., 1949, A study on the closely linked genes, miniature and dusky, in Drosophila virilis, with some considerations on the allelism of genes. Cytologia 14: 87–97.CrossRefGoogle Scholar
  12. Laughnan J. R., 1949, The action of allelic forms of the gene A in maize II. The relation of crossing over to mutation of Ab. Proc. Nat. Acad. Sci., Wash. 35: 167–178.CrossRefGoogle Scholar
  13. 1950, The action of allelic forms of the gene A in maize. III. Studies on the occurrence of isoquercitrin in brown and purple plants and its lack of identity with the brown pigments. Proc. Nat. Acad. Sci., Wash. 36: 312–318.Google Scholar
  14. Lewis D., 1947, Competition and dominance of incompatibility alleles in diploid pollen. Heredity 1: 85–108.CrossRefGoogle Scholar
  15. Lewis D., 1949, Structure of the incompatibility gene. Heredity 3: 339–355.PubMedCrossRefGoogle Scholar
  16. Lewis E. B., 1942, The Star and asteroid loci in Drosophila melanogaster. Genetics 27: 153–154 (abstract).Google Scholar
  17. Lewis E. B., 1945, The relation of repeats to position effects in Drosophila melanogaster. Genetics 30: 137–166.PubMedGoogle Scholar
  18. Lewis E. B., 1948, Pseudo-allelism in Drosophila melanogaster, Genetics 33: 113 (abstract).PubMedGoogle Scholar
  19. Lewis E. B., 1949, A study of adjacent genes. Heredity 3: 130 (abstract).CrossRefGoogle Scholar
  20. Lewis E. B., 1950, The phenomenon of position effect. Advances in Genetics 3: 73–115.PubMedCrossRefGoogle Scholar
  21. McClintock B., 1944, The relation of homozygous deficiencies to mutations and allelic series in maize. Genetics 29: 478–502.PubMedGoogle Scholar
  22. Metz C.W., 1937, Small deficiencies and the problem of genetic units in the giant chromosomes. Genetics 22: 543–556.PubMedGoogle Scholar
  23. Metz C.W., 1947, Duplication of chromosome parts as a factor in evolution. Amer. Nat. 81: 81–103.CrossRefGoogle Scholar
  24. Muller H. J., 1932, Further studies on the nature and causes of gene mutations. Proc. Sixth Intern. Cong. Genet. 1: 213–255.Google Scholar
  25. Muller H. J., and Prokofyeva A. A., 1935, The individual gene in relation to the chromomere and the chromosome. Proc. Nat. Acad. Sci., Wash. 21: 16–26.CrossRefGoogle Scholar
  26. Offerman C. A., 1935, The position effect and its bearing on genetics. Bull. Acad. Sci. U. R. S. S. Ser. Biol. 159–170.Google Scholar
  27. Oliver C. P., 1940, A reversion to wild-type associated with crossing-over in Drosophila melanogaster. Proc. Nat. Acad. Sci., Wash. 26: 452–454.CrossRefGoogle Scholar
  28. Oliver C. P., and Green M. M., 1944, Heterosis in compounds of lozenge alleles in Drosophila melanogaster. Genetics 29: 331–347.PubMedGoogle Scholar
  29. Pontecorvo G., 1950, New fields in the biochemical genetics of micro-organisms. Biochem. Soc. Symposia 4: 40–50.Google Scholar
  30. Roper J. A., 1950, Search for linkage between genes determining a vitamin requirement, Nature, Lond. 166: 956–957.CrossRefGoogle Scholar
  31. Sando C. E., and Bartlett H. E., 1922, Pigments of the Mendelian color types in maize: Isoquercitin from brown-husked maize. J. Biol. Chem. 54: 629–645.Google Scholar
  32. Serebrovsky A. S., 1930, Untersuchungen uber Treppenallelomorphismus. IV. Transgenation scute-6 und ein Fall des ‘Nicht-Allelomorphismus’ von Gliedern einer Allelomorphenereihe bei Drosophila melanogaster. Arch. Entw.-mech. Org. 122: 88–104.CrossRefGoogle Scholar
  33. Serebrovsky A. S., 1938, Genes scute and achaete in Drosophila melanogaster and a hypothesis of gene divergency. C. R. (Dokl) Acad. Sci. U. R. S. S. 19: 77–81.Google Scholar
  34. Snodgrass R. E., 1935, Principles of Insect Physiology. New York McGraw-Hill.Google Scholar
  35. Stadler L. J., 1946, Spontaneous mutation at the R locus in maize. I. The aleurone-color and plant-color effects. Genetics 31: 377–394.Google Scholar
  36. Stadler L. J., 1951, Spontaneous mutation in maize. Cold Spring Harb. Symposium Quant. Biol. 16.Google Scholar
  37. Stephens S. G., 1948, A biochemical basis for the pseudo-allelic anthocyanin series in Gossypium. Genetics 33: 191–214.PubMedGoogle Scholar
  38. Stephens S. G., 1948, Spectrophotometric evidence for the presence of a leuco precursor of both anthoxanthin and anthocyan pigments in Asiatic cotton flowers. Arch. Biochem. 18: 449–459.PubMedGoogle Scholar
  39. Stormont C., Owen R. D., and Irwin M. R., 1951, The B and C systems of bovine blood groups. Genetics 36: 134–161.PubMedGoogle Scholar
  40. Stern C., and Schaeffer E. W., 1943, On primary attributes of alleles in Drosophila melanogaster. Proc. Nat. Acad. Sci., Wash. 29: 351–361.CrossRefGoogle Scholar
  41. Sturtevant A. H., 1925, The effects of unequal crossing over at the bar locus in Drosophila. Genetics 10: 117–147.PubMedGoogle Scholar
  42. Sturtevant A. H., 1928, A further study of the so-called mutation at the bar locus of Drosophila. Genetics 13: 401–409.PubMedGoogle Scholar
  43. Sutton E., 1943, A cytogenetic study of the yellow-scute region of the X chromosome in Drosophila melanogaster. Genetics 28: 210–217.PubMedGoogle Scholar
  44. Wright S., 1941, The physiology of the gene. Physiol. Rev. 21: 487–527.Google Scholar
  45. Yu C. P., and Chang T. S., 1948, Further studies on the inheritance of anthocyanin pigmentation in Asiatic cotton. J. Genet. 49: 46–56.PubMedCrossRefGoogle Scholar
  46. Zalokar M., 1947, Anatomie du thorax de Drosophila melanogaster. Rev. suisse Zool. 54: 17–53.Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • E. B. Lewis
    • 1
  1. 1.Kerckhoff Laboratories of BiologyCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations