Performance Analysis of Communication Protocols

  • William Turin
Part of the Information Technology: Transmission, Processing and Storage book series (PSTE)


Forward error-correction schemes are most effective if the channel error rate and burstiness are low. However, this is not the case in many applications. For example, the wireless channel distortions, such as fading, adjacent channel and co-channel interference, specular reflections, and shadowing, lead to a bursty nature of errors with high error rate. It is difficult to achieve a reasonable reliability of communications using forward error-correction schemes alone because the required code redundancy, decoding delay, and the system complexity are often not acceptable. If a return channel is available, it is possible to achieve high reliability in a simple system by sending the information about the status of the received information back to the transmitter over the return channel.


Communication Protocol Code Word Direct Channel Frame Loss Return Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Benice and A. H. Frey, Jr., “An analysis of retransmission systems,”IEEE Trans. Commun. Technol. COM-12, 135–145, Dec. (1964).CrossRefGoogle Scholar
  2. 2.
    H. O. Burton and D. D. Sullivan, “Errors and error control,” Proc.IEEE 60, 1293–1301, Nov. (1972).CrossRefGoogle Scholar
  3. 3.
    L.F. Chang, “Throughput estimation of ARQ protocols for a Rayleigh fading channels using fade and interfade duration statistics,”IEEE Trans. Veh. Tech. VT-40, 223–229, Feb. (1991).CrossRefGoogle Scholar
  4. 4.
    Y.J. Cho and C.K. Un, “Performance analysis of ARQ error controls under Markovian block error pattern,”IEEE Trans. Commun. COM-42, 2051–2061, Feb.-Apr. (1994).CrossRefGoogle Scholar
  5. 5.
    J. P. Gray, “Line control procedures,”Proc. IEEE 60, 1301–1312, Nov. (1972).CrossRefGoogle Scholar
  6. 6.
    G. J. Holtzman Design and Validation of Computer Protocols (Prentice-Hall, Englewood Cliffs, New Jersey, 1991).Google Scholar
  7. 7.
    IBM Corp. General Information — Binary Synchronous Communications (File TP-09, Order GA 27–3004–2,1970).Google Scholar
  8. 8.
    S. R. Kim and C. K. Un, “Throughput analysis for two ARQ schemes using combined transition matrix,”IEEE Trans. Commun. COM-40, 1679–1683, Nov. (1992).CrossRefGoogle Scholar
  9. 9.
    C.H.O Leung, Y. Kikumoto, and S.A. Sorensen, “The throughput efficiency of the Go-Back-N ARQ scheme under Markov and related error structures,” IEEE Trans. Commun., COM-36, 231–234, Feb. (1988).CrossRefGoogle Scholar
  10. 10.
    S. Lin, D. J. Costello, and M. J. Miller, “Automatic-repeat-request error-control scheme,” IIEEE Comm.Mag. 72, 5–17, Dec. (1984).CrossRefGoogle Scholar
  11. 11.
    S. Lin and D. J. Costello Error Control Coding: Fundamentals and Applications (Prentice-Hall, Englewood Cliffs, New Jersey, 1983).Google Scholar
  12. 12.
    D.L. Lu and J.F. Chang, “Performance of ARQ protocols in nonindependent channel errors,” IEEE Trans. Commun. COM-41, 721–730, May (1993).zbMATHCrossRefGoogle Scholar
  13. 13.
    J. J. Metzner and K. C. Morgan, “Coded binary decision-feedback communication systems,” IRE Trans. Commun. Syst. CS-8, 101–113, June (1960).CrossRefGoogle Scholar
  14. 14.
    M. F. Neuts Matrix-Geometric Solutions in Stochastic Models (Jons Hopkins, Baltimore, 1981).zbMATHGoogle Scholar
  15. 15.
    M. F. Neuts Structured Stochastic Matrices of M/G/1 Type and Their Applications (Marcel Dekker, Inc., New York, 1989).zbMATHGoogle Scholar
  16. 16.
    W. W. Peterson and E. J. Weldon, Jr. Error-Correcting Codes (The MIT Press, Cambridge, Massachusetts, 1961).Google Scholar
  17. 17.
    M. Schwartz Telecommunication Networks Protocols Modeling and Analysis (Addison-Wesley, Reading, Massachusetts, 1987).Google Scholar
  18. 18.
    W. Stallings Data and Computer Communications (Macmillan New York, 1988).Google Scholar
  19. 19.
    A. Tanenbaum Computer Networks (Prentice Hall, Englewood Cliffs, New Jersey, 1992).zbMATHGoogle Scholar
  20. 20.
    D. Towsley, “A statistical analysis of ARQ protocols operating in nonindependent error environment,” IEEE Trans. Commun. COM-29, 971–981, Jul. (1981).MathSciNetCrossRefGoogle Scholar
  21. 21.
    E. J. Weldon, “The improved selective-repeat ARQ strategy,” IEEE Trans. Commun. COM-29, 1514–1519, Oct. (1981).CrossRefGoogle Scholar
  22. 22.
    M. Zorzi and R.R. Rao, “Throughput analysis of Go-Back-N ARQ in Markov channels with unreliable feedback,” Proc.IEEE ICC95 1232–1237, Jun (1995).Google Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • William Turin
    • 1
  1. 1.AT&T Labs—ResearchFlorham ParkNew JerseyUSA

Personalised recommendations