Advertisement

Overview of Bismuth Nanowires for Thermoelectric Applications

  • M. S. Dresselhaus
  • Y.-M. Lin
  • O. Rabin
  • M. R. Black
  • S. B. Cronin
  • G. Dresselhaus
Chapter
Part of the Fundamental Materials Research book series (FMRE)

Abstract

The goal of this workshop on thermoelectric materials “Beyond Bismuth Telluride” was to inspire researchers in the thermoelectrics field to think boldly about the future of Thermoelectrics Science and Technology and to identify what it would take to make a big step forward in this research area. The field of thermoelectrics advanced rapidly in the 1950s when the basic science of thermoelectric materials became well established, the important role of heavily doped semiconductors as good thermoelectric materials became accepted, the thermoelectric material bismuth telluride was discovered and developed for commercialization, and the thermoelectrics industry was launched. At that time it was established that the effectiveness of a thermoelectric material could in an approximate way be described in terms of the dimensionless thermoelectric figure of merit, ZT= S 2σT/κ where S, σ Tand κ are the Seebeck coefficient, the electrical conductivity, the temperature and the thermal conductivity. Over the following 3 decades 1960–1990, only incremental gains were made in increasing ZT, with Bi2Te3remaining the best commercial material at ZT≈ 1. During that 3 decade period, the thermoelectrics field received little attention from the worldwide scientific research community.lNevertheless the thermoelectrics industry grew slowly but steadily, by finding niche applications for space missions, laboratory equipment, and medical applications, where cost and efficiency were not as important as energy availability, reliability, and predictability.

Keywords

Thermoelectric Property Seebeck Coefficient Thermoelectric Material Wire Diameter Nanowire Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. Goldsmid, Thermoelectric Refrigeration, Plenum Press, New York, 1964.Google Scholar
  2. 2.
    T. Harman, P. J. Taylor, D. L. Spears, M. P. Walsh, in: The 18th International Conference on Thermoelectrics: ICT Symposium Proceedings, Baltimore, Institute of Electrical and Electronics Engineers, Inc., Piscataway, NJ 09955-1331, 1999, p. 280.Google Scholar
  3. 3.
    M. S. Dresselhaus, Y. M. Lin, T. Koga, S. B. Cronin, O. Rabin, M. R. Black, G. Dresselhaus, Low dimensional thermoelectricity, in: T. M. Tritt (Ed.), Semiconductors and Semimetals: Recent Trends in Thermoelectric Materials Research III, Vol. 71, Academic Press, San Diego, CA, 2001, pp. 1–121, chapter 1.CrossRefGoogle Scholar
  4. 4.
    Z. Zhang, J. Y. Ying, M. S. Dresselhaus, Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection process, J. Mater. Res. 13 (1998) 1745–1748.CrossRefGoogle Scholar
  5. 5.
    J. P. Heremans, C. M. Thrush, Z. B. Zhang, X. Z. Sun, M. S. Dresselhaus, J. Y. Ying, D. T. Morelli, Magnetoresistance of bismuth nanowire arrays: a possible transition from 1D to 3D localization, Phys. Rev. B. 58 (1998)R10091–R10095.CrossRefGoogle Scholar
  6. 6.
    O. Rabin, P. R. Herz, Y.-M. Lin, S. B. Cronin, A. I. Akinwande, M. S. Dresselhaus, Arrays of nanowires on silicon wafers, in: The 21st International Conference on Thermoelectrics: ICT Symposium Proceedings, Long Beach, CA, 2002.Google Scholar
  7. 7.
    O. Rabin, Y.-M. Lin, S. B. Cronin, M. S. Dresselhaus, Thermoelectric nanowires by electrochemical deposition, in: G. S. Nolas, D. C. Johnson, D. G. Mandus (Eds.), Thermoelectric Materials 2001 - Research and Applications: MRS Symposium Proceedings, Boston, December 2001, Vol. 691, Materials Research Society Press, Pittsburgh, PA, 2001, p. G8.9.Google Scholar
  8. 8.
    O. Rabin, P. R. Herz, S. B. Cronin, Y.-M. Lin, A. I. Akinwande, M. S. Dresselhaus, Nanofabrication using self-assembled alumina templates, in: J. A. Rogers, A. Karim, L. Merhari, D. Norris, Y. Xia (Eds.), Nonlithographic and Lithographic Methods for Nanofabrication: MRS Symposium Proceedings, Boston, November 2000, Vol. 636, Materials Research Society Press, Pittsburgh, PA, 2001, pp. D471–D476.Google Scholar
  9. 9.
    Y.-M. Lin, X. Sun, M. S. Dresselhaus, Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires, Phys. Rev. B 62 (2000) 4610–4623.CrossRefGoogle Scholar
  10. 10.
    Y.-M. Lin, S. B. Cronin, J. Y. Ying, M. S. Dresselhaus, J. P. Heremans, Transport properties of Bi nanowire arrays, Appl. Phys. Lett. 76 (2000) 3944–3946.CrossRefGoogle Scholar
  11. 11.
    Y.-M. Lin, Thermoelectric properties of low-dimensional Bi and Bi1-xSbxalloy systems, Ph. D. thesis, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science (January 2003).Google Scholar
  12. 12.
    O. Rabin, Y.-M. Lin, M. S. Dresselhaus, Anomalously high thermoelectric figure of merit in Bi1-xSbxnanowires by carrier pocket alignment, Appl. Phys. Lett. 79 (2001) 81–83.CrossRefGoogle Scholar
  13. 13.
    Y.-M. Lin, O. Rabin, S. B. Cronin, J. Y. Ying, M. S. Dresselhaus, Semimetal-semiconductor transition in Bi1-xSbxalloy nanowires and their thermoelectric properties, Appl. Phys. Lett. 80 (2002) 2493–2495.CrossRefGoogle Scholar
  14. 14. F. J. DiSalvo, this volume.Google Scholar
  15. 15.
    Y.-M. Lin, S. B. Cronin, O. Rabin, J. Y. Ying, M. S. Dresselhaus, Transport properties of Bi1-xSbxalloy nanowires synthesized by pressure injection, Appl. Phys. Lett. 79 (2001) 677–679.CrossRefGoogle Scholar
  16. 16.
    J. Heremans, C. M. Thrush, Y.-M. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus, J. F. Mansfield, Bismuth nanowire arrays: synthesis and galvanomagnetic properties, Phys. Rev. B 61 (2000) 2921–2930.CrossRefGoogle Scholar
  17. 17.
    B. Lenoir, M. Cassart, J. P. Michenaud, H. Scherrer, S. Scheuer, Transport properties of Bi-rich Bi-Sb alloys, J. Phys. Chem. Solids 57 (1996) 89–99.CrossRefGoogle Scholar
  18. 18.
    Y.-M. Lin, O. Rabin, S. B. Cronin, J. Y. Ying, M. S. Dresselhaus, Experimental investigation of thermoelectric properties of Bi1-xSbxnanowire arrays, in: The 21st International Conference on Thermoelectrics: ICT Symposium Proceedings, Long Beach, CA, 2002.Google Scholar
  19. 19.
    T. C. Harman, P. J. Taylor, M. P. Walsh, D. L. Spears, Thermoelectric quantum-dot superlattices with high ZT, J. Electron. Mater. 29 (2000) L1–L4.CrossRefGoogle Scholar
  20. 20.
    Y.-M. Lin, O. Rabin, M. S. Dresselhaus, Segmented nanowires: a theoretical study of thermoelectric properties, in: The 21st International Conference on Thermoelectrics: ICT Symposium Proceedings, Long Beach, CA, 2002.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • M. S. Dresselhaus
    • 1
    • 2
  • Y.-M. Lin
    • 2
  • O. Rabin
    • 3
  • M. R. Black
    • 2
  • S. B. Cronin
    • 1
  • G. Dresselhaus
    • 4
  1. 1.Department of PhysicsMassachusetts Institute of Technology (MIT)CambridgeUSA
  2. 2.Department of Electrical Engineering and Computer ScienceMITCambridgeUSA
  3. 3.Department of ChemistryMITCambridgeUSA
  4. 4.Francis Bitter Magnet LaboratoryMITCambridgeUSA

Personalised recommendations