Advertisement

Thermal Conduction in CoSb3-based Skutterudites

  • Jihui Yang
Chapter
  • 592 Downloads
Part of the Fundamental Materials Research book series (FMRE)

Abstract

Over the past several years, skutterudite compounds have been extensively studied due to their high thermoelectric performance in the intermediate temperature range between 500 K and 1000 K.1-5Potential automotive applications of these materials include waste heat recovery from exhaust gases and radiators. For example, the exhaust temperature of a four-cylinder engine under normal operating conditions is about 800 K, a temperature at which high thermoelectric figure of merit is observed for skutterudite compounds. In addition to the broad materials studies, prototype generators were built in the US,6,7Japan,8,9and Europe.10CoSb3-based skutterudites have particularly been the focal point of research mainly because of the abundance of the constituent elements. The chemical formula for binary skutterudites is MX3, where the metal atom M can be Co, Ir or Rh, and the pnicogen atom X can be P, As, or Sb. Binary skutterudite compounds crystallize in a body-centered-cubic structure with space group Im3,and the crystal structure contains large voids at the apositions (12-coordinated); each M atom is octahedrally surrounded by X atoms forming a MX6octahedron (see Fig. 1). They are semiconductors with small band gaps (~ 100 meV), high carrier mobilities, and modest thermopowers. Detailed structural and electronic properties can be found in two recent reviews.11,12Despite their excellent electronic properties, they possess thermal conductivities (~ 10 W/mK at room temperature) that are too high to compete with the state-of-the-art thermoelectric materials.
Figure 1.

Crystal structure ofthe filled skutterudites GyM4X12. Large blue spheres represent the guest atoms G or crystallographic voids, small green spheres represent metal atoms M, and small red atoms represent pnicogen atoms X. MX6octahedra are shown in the lower half of the figure. The guest atoms or the voids are enclosed in the irregular dodecahedral (12-fold) cages of X atoms.

Keywords

Thermoelectric Material Hole Concentration Lattice Thermal Conductivity Total Thermal Conductivity Electronic Thermal Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. -P. Fleurial, A. Borshchevsky, T. Caillat, D. T. Morelli, and G. P. Meisner, Proceedings of the 15th International Conference on Thermoelectrics, IEEE catalogue number 96TH8169 (IEEE, Piscataway, NJ, 1997), p. 91.Google Scholar
  2. 2.
    B. C. Sales, MRS Bull. 23,15 (1998).Google Scholar
  3. 3.
    G. S. Nolas, M. Kaeser, R. T. Littleton IV, and T. M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).CrossRefGoogle Scholar
  4. 4.
    L. D. Chen, T. Kawahara, X. F. Tang, T. Hirai, J. S. Dyck, W. Chen, and C. Uher, J. Appl. Phys. 90, 1864 (2001).CrossRefGoogle Scholar
  5. 5.
    G. A. Lamberton, Jr., S. Bhattacharya, R. T. Littleton IV, M. A. Kaeser, R. H. Tedstrom, and T. M. Tritt, J. Yang, and G. S. Nolas, Appl. Phys. Lett. 80, 598 (2002).CrossRefGoogle Scholar
  6. 6.
    D. T. Morelli, Proceedings of the 15th International Conference on Thermoelectrics, IEEE catalogue number 96TH8169 (IEEE, Piscataway, NJ, 1996), p. 383.Google Scholar
  7. 7.
    A. S. Kushch, J. C. Bass, S. Ghamaty, and N. B. Eisner, Proceedings of the 20thInternational Conference on Thermoelectrics,IEEE catalogue number 01TH8589 (IEEE, Piscataway, NJ, 2001), p. 422.Google Scholar
  8. 8.
    E. Takanose, and H. Tamakoshi, Proceedings of the 12th International Conference on Thermoelectrics(Institute of Electrical Engineers of Japan, 1994), p. 467.Google Scholar
  9. 9.
    K. Matsubara, Proc. Mat. Res. Soc. 691, G9.1 (2001).CrossRefGoogle Scholar
  10. 10.
    U. Birkholz, E. Groβ, U. Sthörer, K. Voss, D. O. Gruden, and W. Wurster, Proceedings of the 7th Interna- tional Conference on Thermoelectrics(University of Texas-Arlington, 1988), p. 124.Google Scholar
  11. 11.
    C. Uher, in Semiconductors and Semimetals, Vol. 69, edited by T. M. Tritt (Academic Press, San Diego, CA, 2000), p. 139.Google Scholar
  12. 12.
    G. S. Nolas, D. T. Morelli, and T. M. Tritt, Ann. Rev. Mater. Sci. 29, 89 (1999).CrossRefGoogle Scholar
  13. 13.
    W. Jeitschko and D. J. Braun, Acta Crystallogr. B33, 3401 (1977).Google Scholar
  14. 14.
    G. A. Slack and V. Tsoukala, J. Appl. Phys. 76, 1635 (1994).CrossRefGoogle Scholar
  15. 15.
    D. T. Morelli and G. P. Meisner, J. Appl. Phys. 77, 3777 (1995).CrossRefGoogle Scholar
  16. 16.
    B. C. Sales, D. Mandrus, and R. K. Williams, Science 272, 1325 (1996).CrossRefGoogle Scholar
  17. 17.
    B. C. Sales, B. C. Chakoumakos, and D. Mandrus, Phys. Rev. B 61, 2475 (2000).CrossRefGoogle Scholar
  18. 18.
    G. S. Nolas, M. Kaeser, R. T. Littleton IV, and T. M. Tritt, ,Appl. Phys. Lett. 77, 1855 (2000).CrossRefGoogle Scholar
  19. 19.
    L. D. Chen, T. Kawahara, X. F. Tang, T. Hirai, J. S. Dyck, W. Chen, and C. Uher, J. Appl. Phys. 90, 1864 (2001).CrossRefGoogle Scholar
  20. 20.
    G. A. Lamberton, Jr., S. Bhattacharya, R. T. Littleton IV, M. A. Kaeser, R. H. Tedstrom, and T. M. Tritt, J. Yang, G. S. Nolas, Appl. Phys. Lett. 80, 598 (2002).Google Scholar
  21. 21.
    B. Chen, J. Xu, C. Uher, D. T. Morelli, G. P. Meisner, J.-P. Fleurial, T. Caillat, and A. Borshchevsky, Phys. Rev. B 55,1476 (1997).CrossRefGoogle Scholar
  22. 22.
    D. T. Morelli, G. P. Meisner, B. Chen, S. Hu, and C. Uher, Phys. Rev. B 56, 7376 (1997).CrossRefGoogle Scholar
  23. 23.
    J. Yang, G. P. Meisner, D. T. Morelli, and C. Uher, Phys. Rev. B 63, 014410 (2001).CrossRefGoogle Scholar
  24. 24.
    J. Yang, M. G. Endres, and G. P. Meisner, Phys. Rev. B 66, 014436 (2002).CrossRefGoogle Scholar
  25. 25.
    H. Anno, H. Tashiro, and K. Matsubara, Proceedings of the 18th International Conference on Thermoelectrics,IEEE catalogue number 99TH8407 (IEEE, Piscataway, NJ, 1999), p. 169.Google Scholar
  26. 26.
    H. Anno, K. Matsubara, Y. Notohara, T. Sakakibara, and H. Tashiro, J. Appl. Phys. 86, 3780 (1999).CrossRefGoogle Scholar
  27. 27.
    J. Yang, D. T. Morelli, G. P. Meisner, W. Chen, J. S. Dyck, and C. Uher, Phys. Rev. B 65, 094115 (2002).CrossRefGoogle Scholar
  28. 28.
    J. S. Dyck, W. Chen, J. Yang, G. P. Meisner, and C. Uher, Phys. Rev. B 65, 115204 (2002).CrossRefGoogle Scholar
  29. 29. J. Yang, D. T. Morelli, G. P. Meisner, W. Chen, J. S. Dyck, and C. Uher, submitted to Phys. Rev. B.Google Scholar
  30. 30.
    H. Anno, and K. Matsubara, Recent Res. Devel. Applied Phys. 3, 47 (2000).Google Scholar
  31. 31.
    J. S. Dyck, W. Chen, C. Uher, L. Chen, X. Tang, and T. Hirai, J. Appl. Phys. 91, 3698 (2002).CrossRefGoogle Scholar
  32. 32.
    J. Yang, Ph. D. Thesis, University of Michigan, Ann Arbor, MI, 2000.Google Scholar
  33. 33.
    R. Berman, Thermal Conduction in Solids(Oxford University Press, Oxford, UK, 1976).Google Scholar
  34. 34.
    G. A. Glassbrenner, and G. A. Slack, Phys. Rev. 134, A1058 (1964).CrossRefGoogle Scholar
  35. 35.
    J. M. Ziman, Electrons and Phonons(Clarendon Press, Oxford, UK, 1960).Google Scholar
  36. 36.
    R. O. Pohl, Phys. Rev. Lett. 8, 481 (1962).CrossRefGoogle Scholar
  37. 37.
    J. L. Cohn, G. S. Nolas, V. Fessatidis, T. H. Metcalf, and G. A. Slack, Phys. Rev. Lett. 82, 779 (1999).CrossRefGoogle Scholar
  38. 38.
    A. B. Pippard, Phil. Mag. 46, 1104 (1955).Google Scholar
  39. 39.
    J. Callaway, Phys. Rev 113, 1046 (1959).CrossRefGoogle Scholar
  40. 40.
    J. Callaway, Phys. Rev 120, 1149 (1960).CrossRefGoogle Scholar
  41. 41.
    G. P. Meisner, D. T. Morelli, S. Hu, J. Yang, and C. Uher, Phys. Rev. Lett. 80, 3551 (1998).CrossRefGoogle Scholar
  42. 42.
    G. A. Slack, Phys. Rev. 126, 427 (1962).CrossRefGoogle Scholar
  43. 43.
    C. A. Ratsifaritana and P. G. Klemens, ,International Journal of Thermophysics 8, 737 (1987).CrossRefGoogle Scholar
  44. 44.
    P. G. Klemens, Nuclear Instruments and Methods in Physics Research B1, 204 (1984).Google Scholar
  45. 45.
    J. H. Harris, R. C. Enck and R. A. Youngman, Phys. Rev. B. 47, 5428 (1993).CrossRefGoogle Scholar
  46. 46.
    J. Nagao, M. Ferhat, H. Anno, K. Matsubara, E. Hatta, and K. Mukasa, Appl. Phys. Lett. 76, 3436 (2000).CrossRefGoogle Scholar
  47. 47.
    G. A. Slack, (private communication)Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Jihui Yang
    • 1
  1. 1.Materials and Processes LaboratoryGM R&D CenterWarren

Personalised recommendations