Thermoelectric Transport in Bismuth Nanowires: Experimental Results

  • Joseph P. Heremans
Part of the Fundamental Materials Research book series (FMRE)


The most commonly used refrigeration technology today is based on a vapor-compression cycle in which the working fluid is tetrafluoroethane (C2H2F4or R134a) or chlorodifluoromethane (CHClF2or R22). R134a was developed as a replacement for freon (R12), because freon destroys the protective ozone layer in the stratosphere. Unfortunately, R134a could contribute to global warming1. This has prompted an intense search for new refrigeration technologies. The principal advantages of Peltier coolers are their robustness and simplicity, their compactness, the ease with which they are controlled, and the fact that they can be reversed for use as heaters. Unfortunately, the low thermodynamic efficiency of existing devices makes them unsuitable for mid-sized and large air-conditioning and refrigeration systems. New developments in nanosciences have resulted in thermoelectric materials with a room temperature thermoelectric figure of merit of such magnitude that this problem may be overcome. Thermoelectric cooling may then be a competitive candidate for refrigeration systems that are free from green-house effect producing fluids.


Anodic Alumina Thermoelectric Material Thermoelectric Power Wire Diameter Porous Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. A. Fisher, C. H. Sales, W. C. Wang, M. K. W. Ko and N. D. Sze, Nature (London) 344, 513 (1990).CrossRefGoogle Scholar
  2. 2.
    H. J. Goldsmid, Applications of Thermoelectricity, Methuen, London (1960).Google Scholar
  3. 3.
    R. Venkatasubramanian, E. Silvola, T. Colpitts and B. O’Quinn, Nature (London) 413, 597 (2001).CrossRefGoogle Scholar
  4. 4.
    L. D. Hicks and M. S. Dresselhaus,Pliys. Rev. B47, 12727 (1993);Phys. Rev. B 47, 16631 (1993).Google Scholar
  5. 5.
    Y-M. Lin, X. Sun and M.S. Dresselhaus,Phys. Rev. B 62, 4610 (2000).CrossRefGoogle Scholar
  6. 6.
    Uchino etal.,Jpn. J. Appl. Phys. 391675 (2000)Google Scholar
  7. 7.
    T. C. Harman, P. J. Taylor and M. P. Walsh,United States Patent Application US2002/0053359(2002).Google Scholar
  8. 8.
    J. P. Heremans, C. M. Thrush, Y.-M. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus and J. Mansfield,Phys. Rev. B 612921 (2000)CrossRefGoogle Scholar
  9. 9.
    J. P. Heremans, C. M. Thrush, D. T. Morelli and M.C. Wu, Phys. Rev. Lett. 88216801 (2002)CrossRefGoogle Scholar
  10. 10.
    J. P. Heremans and C. M. Thrush,Phys. Rev. B 5912579 (1999)CrossRefGoogle Scholar
  11. 11.
    R. R. Heikes and R. W. Ure Thermoelectricity: Science and EngineeringInterscience Publishers, New York, 1961, page 315.Google Scholar
  12. 12.
    J. Heremans, C. M. Thrush, Z. Zhang, X. Sun, M. S. Dresselhaus, J. Y. Ying and D. T. Morelli Phys. Rev B 58R10 091 (1998)CrossRefGoogle Scholar
  13. 13.
    J. P. Heremans, C. M. Thrush, Y.-M. Lin, S. B. Cronin and M. S. Dresselhaus Phys. Rev B 63085406 (2001)CrossRefGoogle Scholar
  14. 14.
    J. P. Heremans and O. P. Hansen,J. Phys. C 123483 (1979)CrossRefGoogle Scholar
  15. 15.
    K. Seeger,Semiconductor Physics,3d Ed., Springer-Verlag, Berlin (1985), p. 42and pp. 81–82.Google Scholar
  16. 16.
    A. A. Abrikosov, Fundamentals of the theory of metals, North-Holland, Amsterdam (1988), pp 223–232Google Scholar
  17. 17.
    G. D. Guttman, E. Ben-Jacob and D. J. Bergman, Phys. Rev. B 5117758 (1995)CrossRefGoogle Scholar
  18. 18.
    J.P.Heremans,C. M. Thrush and D. T. Morelli Phys. Rev. Lett. 102098 (2001)Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Joseph P. Heremans
    • 1
  1. 1.Delphi Research LabsDelphi CorporationShelby Township

Personalised recommendations