Advertisement

Thermoelectrics with Thermionic Boundary Conditions

  • G. D. Mahan
Chapter
  • 559 Downloads
Part of the Fundamental Materials Research book series (FMRE)

Abstract

Good thermoelectrics are usually bulk or multilayer semiconductors.1-4They are used for solid state refrigerators and power generators. Thermionic refrigerators5-8cool by emitting electrons by thermionic emission. Since only “hot” electrons can leave the surface, the remaining system is cooled. It is a form of evaporative cooling.

Keywords

Thermionic Emission Seebeck Coefficient Joule Heating Thermionic Boundary Condition Thermoelectric Device 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. J. Goldsmid, Electronic Refrigeration, (Pion, London, 1986)Google Scholar
  2. 2.
    D. M. Rowe and C. M. Bhandari, Modern Thermoelectrics, (Reston, VA, 1983)Google Scholar
  3. 3.
    CRC Handbook of Thermoelectrics, ed. D.M. Rowe (CRC Press, Boca Raton, 1994)Google Scholar
  4. 4.
    G. D. Mahan, in Solid State Physics, Vol. 51, ed. H. Ehrenreich and F. Spaepen (Academic Press, San Diego, 1998), pg. 81-157Google Scholar
  5. 5.
    G. D. Mahan, J. Appl. Phys.76, 4362-4366 (1994)CrossRefGoogle Scholar
  6. 6.
    A. Shakouri and J. E. Bowers, Appl. Phys. Lett. 71, 1234–1237 (1997)CrossRefGoogle Scholar
  7. 7.
    G. D. Mahan and L. M. Woods, Phys. Rev. Lett. 80, 4016–4019 (1998)CrossRefGoogle Scholar
  8. 8.
    G. D. Mahan, J. O. Sofo and M. Bartkowiak, J. Appl. Phys., 83, 4683–4689 (1998)CrossRefGoogle Scholar
  9. 9.
    PL. Hagelstein and Y. Kucherov, in Thermoelectric Materials2001-Materials and Applications, ed. G.S. Nolas, D.C. Johnson and D.G. Mandrus, Materials Research Society Vol. 691, (MRS, Warrendale, PA, 2002), pg 319–324Google Scholar
  10. 10.
    PL. Hagelstein and Y. Kucherov, Appl. Phys. Lett. 81, 559–561 (2002)CrossRefGoogle Scholar
  11. 11.
    G.D. Mahan, J. Appl. Physics87, 7326–7332 (2000)CrossRefGoogle Scholar
  12. 12.
    G.D. Mahan, Chap. 3 in Recent Trends in Thermoelectric Materials Research III, ed. T.M. Tritt, Vol. 71 in Semiconductors and Semimetals(Academic Press, New York, 2001)Google Scholar
  13. 13.
    J.O. Sofo, G.D. Mahan, and J. Baars, J. Appl. Phys. 76, 2249–2254 (1994)CrossRefGoogle Scholar
  14. 14.
    R. Venkatasubramanian, E. Silvola, R. Colpitts and B. O'Quinn, Nature, 413, 597–602 (October 11, 2001)CrossRefGoogle Scholar
  15. 15.
    R. D. Barnard, Thermoelectricity in Metals and Alloys(Taylor and Francis, London, 1972)Google Scholar
  16. 16.
    H. B. Callen, Thermodynamics (John Wiley, New York, 1960) ch. 17. Note the first edition is superior to the second edition for the treatment of this topic.Google Scholar
  17. 17.
    R. Haase, Thermodynamics of Irreversible Processes (Dover, New York, 1990), ch.4Google Scholar
  18. 18.
    S. R. deGroot and P. Mazur, Non-equilibrium Thermodynamics(Dover, New York, 1984)Google Scholar
  19. 19.
    G. D. Mahan, Many-Particle Physics, ThirdEdition (Kluwer-Plenum, New York, 2000)Google Scholar
  20. 20.
    C. J. Domenicali, Phys. Rev. 92, 877–880 (1953); J. Appl. Phys. 25, 1310 (1954)Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • G. D. Mahan
    • 1
  1. 1.Department of PhysicsPennsylvania State UniversityUniversity Park

Personalised recommendations