Advertisement

Can Theory Help in the Search for Better Thermoelectric Materials?

  • Nick P. Blake
  • Horia Metiu
Chapter
Part of the Fundamental Materials Research book series (FMRE)

Abstract

Finding a slightly better thermoelectric (TE) material will affect deeply the way we live. Low temperature thermoelectrics will replace existing refrigeration and air conditioning equipment with one that is cheaper, makes no noise, has no moving parts and causes no pollution. High temperature TEs will be used for energy recovery from the exhaust of the engines with internal combustion, increasing fuel efficiency. This can be achieved if we find a reasonably priced thermoelectric material whose performance is increased by a factor of four.

Keywords

Band Structure Thermoelectric Property Generalize Gradient Approximation Seebeck Coefficient Transport Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Slack, in CRC Handbook of Thermoeledrics, edited by D. M. Rowe (CRC Press, Boca Raton, 1995), p 407–440.Google Scholar
  2. 2.
    G. A. Slack, Mat. Res., Symp. Proc. 478, 47–54 (1997).CrossRefGoogle Scholar
  3. 3.
    J. J. Dong, O. F. Sankey, G. K. Ramachandran, and P. F. McMillan, J. Applied Physics 87, 7726–7734 (2000).CrossRefGoogle Scholar
  4. 4.
    C. W. Myles, J. Dong, O. F. Sankey, C. A. Kendziora, and G. S. Nolas, Phys. Rev. B 65, art. no. 235208 (2002).CrossRefGoogle Scholar
  5. 5.
    D. Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher, and M. G. Kanatzidis, Science 287, 1024 –1027 (2000).Google Scholar
  6. 6.
    P. Larson, S. D. Mahanti, and D. Y. Chung,, Phys. Rev. B 65, art. no. 045205 (2002).CrossRefGoogle Scholar
  7. 7.
    V. A. Grenanya, W. C. Tonjes, R. Liu, C. G. Olson, D. Y. Chung, and M. G. Kanatzidis, Phys. Rev. B 65, art. no. 205123 (2002).CrossRefGoogle Scholar
  8. 8.
    J. B. Krieger, Y. Li, and G. J. Iafrate, Physics Letters A 146, 256–260 (1990).CrossRefGoogle Scholar
  9. 9.
    J. B. Krieger, L. Yan, and G. J. Iafrate, Phys. Rev. A 45, 101–126 (1992).CrossRefGoogle Scholar
  10. 10.
    Y. Li, J. B. Krieger, M. R. Norman, and G. J. Iafrate, Phys. Rev. B 44, 10437–10443 (1991).CrossRefGoogle Scholar
  11. 11.
    M. Städele, M. Moukara, J. A. Majewski, and P. Vogl, Phys. Rev. B 59, 10031–10043 (1999).CrossRefGoogle Scholar
  12. 12.
    R. M. Dreizler and E. K. U. Gross, Density Functional Theory(Springer, Berlin, 1990).CrossRefGoogle Scholar
  13. 13.
    R. A. Smith, Semiconductors, second edition ed. (Cambridge University Press, London, 1978).Google Scholar
  14. 14.
    N. W. Ashcroft and N. D. Mermin, in Solid State Physics, first ed., edited by D. G. Crane (W.B. Saunders Company, Orlando, Florida, 1976), p. 760–761.Google Scholar
  15. 15.
    P. Y. Yu and M. Cardona, Fundamentals of Semiconductors(Springer, New York, 1999).Google Scholar
  16. 16.
    Y. Wang and J. P. Perdew, Phys. Rev. B 44, 13298–13307. (1991).CrossRefGoogle Scholar
  17. 17.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169–11186 (1997).CrossRefGoogle Scholar
  18. 18.
    K. Schwarz, P. Blaha, and G. K. H. Madsen, Comp. Phys. Commun. 147, 71–76 (2001).CrossRefGoogle Scholar
  19. 19.
    N. P. Blake, L. Møllnitz, G. Kresse, and H. Metiu, J. Chem. Phys. 111, 3133–3144 (1999).CrossRefGoogle Scholar
  20. 20.
    A. D. Corso, A. Pasquarello, A. Baldereschi, and R. Car, Phys. Rev. B 53, 1180 –1185 (1996).CrossRefGoogle Scholar
  21. 21.
    N. P. Blake, J. D. Bryan, S. Latturner, G. D. Stucky, and H. Metiu, Journal of Chemical Physics 114, 10063 –10074(2001).CrossRefGoogle Scholar
  22. 22.
    J. D. Bryan and G. D. Stucky, private communication (2002).Google Scholar
  23. 23.
    R. A. Heaton, J. G. Harrison, and C. C. Lin, Phys. Rev. B 28, 5992 – 6007 (1983).CrossRefGoogle Scholar
  24. 24.
    J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048–5079 (1981).CrossRefGoogle Scholar
  25. 25.
    N. P. Blake and H. Metiu, J. Chem. Phys. 109, 9977–9986 (1998).CrossRefGoogle Scholar
  26. 26.
    B. K. Ridley, Quantum Processes in Semiconductors, second ed. (Oxford University Press, New York, 1988).Google Scholar
  27. 27.
    N. P. Blake and H. Metiu, Science in preparation (2003).Google Scholar
  28. 28.
    J. Bardeen and W. Shockley, Phys. Rev. 80, 72–80 (1950).CrossRefGoogle Scholar
  29. 29.
    C. Herring and E. Vogt, Phys. Rev. 101, 944–961 (1956).CrossRefGoogle Scholar
  30. 30.
    N. P. Blake, S. Latturner, J. D. Bryan, G. D. Stucky, and H. Metiu, Journal of Chemical Physics 114, 1006 (2001).CrossRefGoogle Scholar
  31. 31.
    G. S. Nolas, J. L. Cohn, G. A. Slack, and S. B. Schujman, Appl. Phys. Lett. 73, 178 (1998).CrossRefGoogle Scholar
  32. 32.
    B. Eisenmann, H. Schäfer, and R. Zagler, J. Less-Common Met. 118, 43–55 (1986).CrossRefGoogle Scholar
  33. 33.
    G. S. Nolas, T. J. R. Weakley, J. L. Cohn, and R. Sharma, Phys. Rev. B 61, 3845–3850 (2000).CrossRefGoogle Scholar
  34. 34.
    A. Bentien, A. E. C. Palmqvist, J. D. Bryan, S. Latturner, G. D. Stucky, L. Furenlid, and B. B. Iversen, Angew. Chem. Int. Ed. 39, 3613– 3616 (2000).Google Scholar
  35. 35.
    S. E. Latturner, J. D. Bryan, N. Blake, H. Metiu, and G. D. Stucky, Inorganic Chemistry 41, 3956–3961 (2002).CrossRefGoogle Scholar
  36. 36.
    Y. G. Zhang, P. L. Lee, G. S. Nolas, and A. P. Wilkinson, Appl. Phys. Lett. 80, 2931–2933 (2002).CrossRefGoogle Scholar
  37. 37.
    H. G. v. Schnering, Nova. Acta., Leopold. 59, 168 (1985).Google Scholar
  38. 38.
    L. Møllnitz, N. P. Blake, and H. Metiu, Journal of Chemical Physics 117, 1302–1312 (2002).CrossRefGoogle Scholar
  39. 39.
    J. T. Zhao and J. D. Corbett, Inorg. Chem. 33, 5721–5726 (1994).CrossRefGoogle Scholar
  40. 40.
    J. D. Bryan, Ph. D. Thesis, University of California, 2002.Google Scholar
  41. 41.
    J. D. Bryan, A. Bentien, N. P. Blake, H. Metiu, G. D. Stucky, R. D. Poulsen, and B. B. Iversen, J. Applied Phys., in press (2002).Google Scholar
  42. 42.
    B. B. Iversen, A. E. C. Palmqvist, D. E. Cox, G. S. Nolas, G. D. Stucky, N. P. Blake, and H. Metiu, J. Solid State Chem. 149, 455–458 (1999).CrossRefGoogle Scholar
  43. 43.
    N. P. Blake, S. Latturner, J. D. Bryan, G. D. Stucky, and H. Metiu, Journal of Chemical Physics 115, 8060 (2001).CrossRefGoogle Scholar
  44. 44.
    N. P. Blake, S. Latturner, J. D. Bryan, G. D. Stucky, and H. Metiu, Journal of Chemical Physics 116, 9545–9547 (2002).CrossRefGoogle Scholar
  45. 45.
    V. L. Kuznetsov, L. A. Kuznetsova, A. E. Kaliazin, and D. M. Rowe, J. Applied Physics 87, 1–5 (2000).CrossRefGoogle Scholar
  46. 46.
    J. J. Dong, O. F. Sankey, and C. W. Myles, Phys. Rev. Lett. 86, 2361–2364 (2001).CrossRefGoogle Scholar
  47. 47.
    T. F. Fassler and S. Hoffmann, Z. Kristallogr. 214, 722–734 (1999).CrossRefGoogle Scholar
  48. 48.
    L. Chi and J. D. Corbett, Journal of Solid State Chemistry 162, 327–332 (2001).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Nick P. Blake
    • 1
  • Horia Metiu
    • 1
  1. 1.Department of Chemistry and PhysicsUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations