Advertisement

New Bulk Materials for Thermoelectric Applications: Synthetic Strategies Based On Phase Homologies

  • Mercouri G Kanatzidis
Chapter
Part of the Fundamental Materials Research book series (FMRE)

Abstract

Success in discovering new thermoelectric (TE) materials hinges on our ability to achieve simultaneously high electronic conductivity (σ), high thermoelectric power (S) and low thermal conductivity (κ) in the same material.1,2,3These properties define the thermoelectric figure of merit ZT = (S2¦Ò/k)T; where T is the temperature. The S2s product is often called the power factor. All σ, S and κ are transport quantities and therefore are determined by the details of the crystal and electronic structure and scattering of charge carriers. They cannot be controlled independently. The thermal conductivity k has an electronic contribution κeland a lattice contribution, κ1, which is called the lattice thermal conductivity. The latter sometimes can be manipulated independently from the electrical conductivity and thermopower.

Keywords

Seebeck Coefficient Homologous Series Thermoelectric Material Lattice Thermal Conductivity Type Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    (a) Thermoelectric Materials 1998-The Next Generation Materials for Small-Scale Refridgeration and Power Generation Applications, edited by Tritt, T. M.; Kanatzidis, M. G.; Mahan, G. D.; Lyon, Jr., H. B. Mat. Res. Soc. Symp. Proc. 1999, Vol. 545, 233-246. (b) “Thermoelectric Materials- New Directions and Approaches”, Mat. Res. Soc. Symp. Proc., 1997, vol. 478. Edited by Tritt, T.M., Kanatzidis, M. G.; Lyon, H. B.; Mahan, G. D.Google Scholar
  2. 2.
    (a) Kanatzidis, M. G.; DiSalvo, F.J. “Thermoelectric Materials: Solid State Synthesis” ONR Quarterly Review, 1996, Vol. XLVII, 14-22. (b) Mahan, G. D. “Good thermoelectrics” Solid State Phys: 1998, 51, 81- 157. (c) DiSalvo, F. J. “Thermoelectric cooling and power generation”, Science. 1999, 285 5428, 703-706.Google Scholar
  3. 3.
    (a) Tritt T. M. “Thermoelectrics run hot and cold”, Science. 1996, 272, 5266, 1276-1277. (b) Rowe, D. M. “Thermoelectrics, an environmentally-friendly source of electrical power”, Renew Energ. 1999, 16 1-4, 1251-1256.Google Scholar
  4. 4.
    (a) Slack, G. A. “New Materials and Performance Limits for Thermoelectric Cooling” in CRC Handbook of Thermoelectrics” Edited by Rowe, D. M. CRC Press, Boca Raton, 1995, pp. 407-440. (b) Slack, G. A. in “Solid State Physics”, eds. Ehrenreich, H.; Seitz, F.; Turnbull, D. Academic, New York. 1997, Vol. 34, 1.Google Scholar
  5. 5.
    Mott, N. F.; Jones, H. “The Theory of the Properties of Metals and Alloys”, Dover Publications, New York, NY.Google Scholar
  6. 6.
    Bandari, C.M. “Thermoelectric Transport Theory” in CRC Handbook of Thermoelectrics. Edited by Rowe, D. M. CRC Press, Boca Raton, 1995, 27-42.Google Scholar
  7. 7.
    Mahan, G.; Sales, B.; Sharp, J. 1234, Phys. Today, 1997, 50, 42.CrossRefGoogle Scholar
  8. 8.
    Chung, D.-Y.; Hogan, T.; Brazis, P. W.; Rocci-Lane, M.; Kannewurf, C. R.; Bastea, M.; Uher, C.; Kanatzidis, M. 1234, G. Science 2000, 287, 1024-1027.Google Scholar
  9. 9.
    Kanatzidis, M. G.; Chung, D.-Y.; Iordanidis, L.; Choi, K.-S.; Brazis, P.; Rocci, M.; Hogan, T.; Kannewurf, C. Mat. Res. Soc. Symp. Proc. 1998, 545, 233-246.Google Scholar
  10. 10.
    (a) Chung, D.-Y.; Choi, K.-S.; Iordanidis, L.; Schindler, J. L.; Brazis, P. W.; Kannewurf, C. R.; Chen, B.; Hu, S.; Uher, C; Kanatzidis, M. G. Chem. Mater., 1997, 9, 3060-3071. (b) Kanatzidis, M. G.; McCarthy, T. J.; Tanzer, T. A.; Chen, L.-H.; Iordanidis, L.; Hogan, T.; Kannewurf, C. R.; Uher, C, Chen, B. Chem. Mater. 1996, 8, 1465-1474. (c) Chen, B.; Uher, C; Iordanidis, L.; Kanatzidis, M. G. Chem. Mater. 1997, 9, 1655- 1658.Google Scholar
  11. 11.
    Choi, K.-S.; Chung, D.-Y.; Mrotzek, A.; Brazis, P.; Kannewurf, C. R.; Uher, C.; Chen, W.; Hogan, T.; Kanatzidis, M. G. Chem. Mater. 2001, 13, 756-764.Google Scholar
  12. 12.
    Chung, D.-Y.; Iordanidis, L.; Rangan, K. K.; Brazis, P. W.; Kannewurf, C. R.; Kanatzidis, M. G. Chem. Mater. 1999, 11, 1352-1362.Google Scholar
  13. 13.
    Iordanidis, L.; Brazis, P. W.; Kannewurf, C. R.; Kanatzidis, M. G. Mater. Res. Soc. Symp. Proc. (1999), 545 (Thermoelectric Materials 1998--The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications), 189-196.Google Scholar
  14. 14.
    Wang, Y.-C; DiSalvo, F. J.1234, Chem. Mater. 2000, 12, 1011-1017.CrossRefGoogle Scholar
  15. 15.
    Mrotzek, A.; Chung, D.-Y., Hogan, T.; Kanatzidis, M. G., 1234, J. Mater. Chem., 2000, 10, 1667.CrossRefGoogle Scholar
  16. 16.
    Mrotzek, A.; Chung, D.-Y., Ghelani, N.; Hogan, T., Kanatzidis, M. G., 1234, Chem. Eur. J. 2001, 7, 1915.CrossRefGoogle Scholar
  17. 17.
    Mrotzek, A.; Iordanidis, L.; Kanatzidis, M. G., 1234, Chem. Comm. 2001, 17, 1648-1649.CrossRefGoogle Scholar
  18. 18.
    Mrotzek, A.; Kanatzidis, M. G. Acc. Chem Res. Submitted.Google Scholar
  19. 19.
    Although the series formula appears to represent ternary systems made of only A, M, and Se, M can be a combination of monovalent, divalent and trivalent elements and in principle it also represents quaternary and even higher order systems.Google Scholar
  20. 20.
    Sometimes the NaCl111type fragment is referred to as Bi2Te3type since the Bi2Te3structure also derives through excision of infinite two-dimensional slabs cut perpendicular to the [111] direction of the NaCl lattice.Google Scholar
  21. 21.
    Mrotzek, A.; Kanatzidis, M. G.1234, Inorg. Chem. 2001, 40, 6204.CrossRefGoogle Scholar
  22. 22.
    Mrotzek, A.; Kanatzidis, M. G. 1234, J. Solid State Chem. 2002, 167, 299.Google Scholar
  23. 23.
    Cordier, G.; Schafer, H.; Schwidetzky, C. 1234, Rev. Chim. Miner. 1985, 22, 676.Google Scholar
  24. 24.
    Kyratsi, T., Chung, D.-Y., Kanatzidis, M.G., 1234, J. Alloys Compds, 2002, 338, 36.CrossRefGoogle Scholar
  25. 25.
    L. Iordanidis PhD Dissertation Michigan State University 2000.Google Scholar
  26. 26.
    Larson, P.; Mahanti, S. D.; Chung, D.-Y.; Kanatzidis, M. G. Phys. Rev. B, 2001, 65, 045205-1/045205-5.Google Scholar
  27. 27.
    Hsu, K. F.; Chung, D.-Y.; Lal, S.; Mrotzek, A.; Kyratsi, T.; Hogan T.; Kanatzidis M. G. J. 1234, Am. Chem. Soc., 2002, 124, 2410-2411.CrossRefGoogle Scholar
  28. 28.
    Hsu, K. F.; Lal, S.; Hogan T.; Kanatzidis M. G. 1234, Chem. Commun. 2002, 1380-1381.Google Scholar
  29. 29.
    Kyratsi, T.; Dyck, J. S.; Chen, W.; D.-Y. Chung, Uher, C; Paraskevopoulos K. M.; Kanatzidis M. G. in Thermoelectric Materials 2001--Research and Applications Editors: G.S. Nolas, D.C. Johnson, D.G. Mandrus Mat. Res. Soc. Symp. Proc. 2002, 691, G13.2.1-13.2.6.Google Scholar
  30. 30.
    P. W. Brazis, M. Rocci-Lane, J. R. Ireland, D.-Y. Chung, M. G. Kanatzidis and C. R. Kannewurf, 18thInternational Conference. on Thermoelectrics, Proceedings ICT'99, Ed. A. C. Ehrlich, published by IEEE, p. 619.Google Scholar
  31. 31.
    Kyratsi, T.; Dyck, J. S.; Chen, W.; D.-Y. Chung, Uher, C; Paraskevopoulos K. M.; Kanatzidis M. G., J. Appl. Phys., 2002, 92, 965-975.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Mercouri G Kanatzidis
    • 1
  1. 1.Department of Chemistry and Center for Fundamental Materials ResearchMichigan State UniversityEast Lansing

Personalised recommendations