Advertisement

Boron Carbides: Unconventional High-Temperature Thermoelectrics

  • Terrence L. Aselage
  • David Emin
Chapter
Part of the Fundamental Materials Research book series (FMRE)

Abstract

Boron carbides are exceptional materials with distinctive structures and unconventional bonding. Each of boron carbides’ unit cells contains a hollow, cage-like structure whose twelve atoms occupy the vertices of an icosahedron. Strong covalent bonds link icosahedra to one another. As a result, boron carbides are very stiff, hard solids whose melting temperatures exceed 2600K. Boron carbides have long been used in applications such as lightweight ceramic armor that capitalize on these properties.

Keywords

Carrier Density Seebeck Coefficient Boron Atom Boron Carbide Internal Bonding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. N. Makarenko, in Boron and Refractory Borides, edited by V. I. Matkovich(Springer-Verlag, New York, 1977), pp. 310–321 provides an accessible review of this research.CrossRefGoogle Scholar
  2. Boron-Rich Solids 140,AIP Conference Proceedings Vol. 140, edited by D. Emin, T. Aselage, C. L. Beckel, I. A. Howard, and C. Wood (American Institute of Physics, New York, 1986), contains many papers associated with this JPL/Sandia effort.Google Scholar
  3. 3.
    D. Emin, Physics Today, 40, 55 (1987).CrossRefGoogle Scholar
  4. 4.
    D. Emin, Phys. Rev. B 38, 6041 (1988).CrossRefGoogle Scholar
  5. 5.
    D. M. Bylander, L. Kleinman, and S. Lee, Phys. Rev. B 42, 1394 (1990); D. Li and W. Y. Ching, ibid. 52, 17,073(1995).Google Scholar
  6. 6.
    K. A. Schwetz and P. Karduck, in Boron-Rich Solids 231,AIP Conference Proceedings Vol. 231, edited by D. Emin, T. Aselage, A. C. Switendick, B. Morosin, and C. L. Beckel, (American Institute of Physics, New York, 1986), pp. 405–413.CrossRefGoogle Scholar
  7. 7.
    J. A. Shelnutt, B. Morosin, D. Emin, A. Mullendore, G. Slack, and C. Wood, in Boron-Rich Solids 140 (Ref. 2), pp. 312–324.Google Scholar
  8. 8.
    M. Bouchacourt and F. Thevenot, J. Less-Common Met. 82, 219 (1981).CrossRefGoogle Scholar
  9. 9.
    T. L. Aselage, D. R. Tallant, and D. Emin, Phys. Rev. B 56, 3122 (1997); and references therein.Google Scholar
  10. 10.
    T. L. Aselage and D. Emin, in Boron-Rich Solids 231 (Ref. 6), pp. 177–185.Google Scholar
  11. 11.
    C. Wood and D. Emin, Phys. Rev. B 29, 4582 (1984).CrossRefGoogle Scholar
  12. 12.
    D. Emin, in Boron-Rich Solids 140 (Ref. 2), pp. 189–205.Google Scholar
  13. 13.
    D. Emin, Physics Today 35, 34 (1982).CrossRefGoogle Scholar
  14. 14.
    D. Emin, Phys. Rev. B 61, 6069 (2000).Google Scholar
  15. See, for example, articles by E. L. Venturini, L. Z. Azevedo, D. Emin, and C. Wood, in Boron-Rich Solids 140 (Ref. 2), pp. 288–291 and pp. 292–304.Google Scholar
  16. 16.
    T. L. Aselage, D. Emin, and S. S. McCready, Phys. Rev. B 64, 054302 (2001).Google Scholar
  17. 17.
    T. L. Aselage, D. R. Tallant, J. H. Gieske, S. B. van Deusen, and R. G. Tissot, in The Physics and Chemistry of Carbides, Nitrides, and Borides, edited by R. Freer, (Klewer Academic, Dordrecht, 1989), pp. 97–112.Google Scholar
  18. 18.
    H. Werheit and K. deGroot, Phys. Status Solidi B 97, 229 (1980).CrossRefGoogle Scholar
  19. 19.
    A. K. Bandyopadhyay, F. Beuneu, L. Zuppiroli, and M. Beauvy, J. Phys. Chem. Solids, 45, 207 (1984).CrossRefGoogle Scholar
  20. see J. M. Honig, A. A. Cella, and J. C. Cornwell, in Rare Earth Research II,edited by K. S. Vorres, (Gordon and Breach, New York, 1964), pp. 555–564; T. N. Kennedy and J. D. Mackenzie, Physics and Chemistry of Glass, 8, 169 (1967); and H. L. Tuller and A. S. Nowick, J. Phys. Chem. Solids, 38, 859 (1977).Google Scholar
  21. 21.
    R. R. Heikes and R. W. Ure, Jr., in Thermoelectricity:Science and Engineering (Interscience, New York, 1961), Chapter 4.Google Scholar
  22. 22.
    H. B. Callen, in Thermodynamics(Wiley, New York, 1960) pg. 299.Google Scholar
  23. 23.
    D. Emin, Phys. Rev. B 59, 6205 (1999); D. Emin, Phys. Status Solidi, B 205, 385 (1998).Google Scholar
  24. 24.
    D. Emin, Phys. Rev. Lett. 72, 1052 (1994); D. Emin, Phys. Rev. B 49, 9157 (1994).Google Scholar
  25. 25.
    T. L. Aselage, D. Emin, S. McCready, and R. Duncan, Phys. Rev. Lett., 81, 2316 (1998).CrossRefGoogle Scholar
  26. 26.
    C. Wood, D. Emin, and P. E. Gray, Phys. Rev. B, 31, 6811 (1985).CrossRefGoogle Scholar
  27. 27.
    P. A. Medwick, H. E. Fischer, and R. O. Pohl, J. of Alloys and Compounds, 203, 67 (1994).CrossRefGoogle Scholar
  28. 28.
    J. H. Gieske, T. L. Aselage, and D. Emin, in Boron-Rich Solids 231(Ref. 6), pp. 376–379.Google Scholar
  29. 29.
    D. Emin, in Boron-Rich Solids 231(Ref. 6), pp. 65–76.Google Scholar
  30. 30.
    C. Wood, in Boron-Rich Solids 140(Ref. 2), pp. 362–372.Google Scholar
  31. 31.
    N. B. Eisner, G. H. Reynolds, J. H. Norman, and C. H. Shearer, in Boron-Rich Solids 140(Ref. 2), pp. 59–69.Google Scholar
  32. 32.
    T. L. Aselage, D. Emin, G. A. Samara, D. R. Tallant, S. B. van Deusen, M. O. Eatough, H. L. Tardy, E. L. Venturini, and S. M. Johnson, Phys. Rev. B, 48, 11759 (1993).CrossRefGoogle Scholar
  33. 33.
    L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).CrossRefGoogle Scholar
  34. 34.
    D. Emin, Phys. Rev. B 61, 14543 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Terrence L. Aselage
    • 1
  • David Emin
    • 2
  1. 1.Long-Life Power Sources Department 2525Sandia National LaboratoriesAlbuquerque
  2. 2.Department of Physics and AstronomyUniversity of New MexicoAlbuquerque

Personalised recommendations