Thermoelectric Properties of Early Transition Metal Antimonides

  • Enkhthsetseg Dashjav
  • Yulia Zhu
  • Holger Kleinke
Part of the Fundamental Materials Research book series (FMRE)


Thermoelectric materials may be classified based on their thermoelectric figure-of-merit, namely ZT, which is defined as ZT = TS2σ/κ. Therein, T is the actual temperature, S the Seebeck coefficient (thermopower), and σ and κ are the electrical and the thermal conductivities, respectively. The commercially used materials such as Bi2Te3may exhibit ZT values around 1 at the ideal operating temperature; the higher ZT, the better the thermoelectric performance.1During the last years, several new materials have been investigated with respect to optimizing their thermoelectric properties. This includes ternary and higher bismuth chalcogenides,2-6germanium and tin-based clathrates,7-10and tin-and antimony-based half-Heusler compounds.11-15Last but not least the filled skutterudites have attracted wide interest within and beyond the thermoelectric community because of their outstanding thermoelectric properties, which were described in 1996.16Many investigations into this structure family followed subsequently.17-24The general formula of the filled skutterudites is Ln δ M 4Sb12with 0 ≤δ≤1, with Lnbeing a lanthanoid and Ma late transition element such as Fe, Co, Ni,... While the parent compound, LaFe4Sb12, is metallic, LaFe3CoSb12exhibits outstanding thermoelectric properties based on its experimentally determined figure-of-merit.In LaFe3CoSb12, ZT may become as high as 1.4 at 730 °C, for its good thermopower and electrical conductivity are combined with an extraordinarily low thermal conductivity. The latter stems from the high vibrations of the La atom situated in a large "cage" of Sb atoms, a phenomenon usually referred to as rattling. Thus, the filled skutterudites may serve as an ideal for a phonon-glass, electron-crystal material.25,26


Thermoelectric Property Seebeck Coefficient Electronic Structure Calculation Metallic Property Single Crystal Structure Determination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. M. Rowe, CRC Handbook of Thermoelectrics, CRC Press, Boca Raton, FL (1995).Google Scholar
  2. 2.
    M. G. Kanatzidis, T. J. McCarthy, T. A. Tanzer, L. -H. Chen, L. Iordanidis, T. Hogan, C. R. Kannewurf, C. Uher and B. Chen, Chem. Mater. 8, 1465–1474 (1996).CrossRefGoogle Scholar
  3. 3.
    D.-Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannewurf, M. Bastea, C. Uher and M. G. Kanatzidis, 1234, Science (Washington, D. C.) 287, 1024–1027 (2000).CrossRefGoogle Scholar
  4. 4.
    K.-F. Hsu, D.-Y. Chung, S. Lal, A. Mrotzek, T. Kyratsi, T. Hogan and M. G. Kanatzidis, J. Am. Chem. Soc. 124, 2410–2411 (2002).CrossRefGoogle Scholar
  5. 5.
    T. Kyratsi, J. S. Dyck, W. Chen, D.-Y. Chung, C. Uher, K. M. Paraskevopoulos and M. G. Kanatzidis, J. Appl. Phys. 92, 965–975 (2002).CrossRefGoogle Scholar
  6. 6.
    D.-Y. Chung, S. Jobic, T. Hogan, C. R. Kannewurf, R. Brec, J. Rouxel and M. G. Kanatzidis, J. Am. Chem. Soc. 119, 2505–2515 (1997).CrossRefGoogle Scholar
  7. 7.
    N. P. Blake, L. Mollnitz, G. Kresse and H. Metiu, J. Chem. Phys. 111, 3133–3144 (1999).CrossRefGoogle Scholar
  8. 8.
    F. Chen, K. L. Stokes and G. S. Nolas, J. Phys. Chem. Solids 63, 827–832 (2002).CrossRefGoogle Scholar
  9. 9.
    A. Bentien, B. B. Iversen, J. D. Bryan, G. D. Stucky, A. E. C. Palmqvist, A. J. Schultz and R. W. Henning, J. Appl. Phys. 91, 5694–5699 (2002).CrossRefGoogle Scholar
  10. 10.
    J. Kitagawa, T. Sasakawa, T. Suemitsu, T. Takabatake and M. Ishikawa, J. Phys. Soc. Jpn. 71, 1222–1225 (2002).CrossRefGoogle Scholar
  11. 11.
    D. P. Young, P. Khalifah, R. J. Cava and A. P. Ramirez, J. Appl. Phys. 87, 317–321 (2000).CrossRefGoogle Scholar
  12. 12.
    Y. Xia, S. Bhattacharya, V. Ponnambalam, A. L. Pope, S. J. Poon and T. M. Tritt, J. Appl. Phys. 88, 1952–1955 (2000).CrossRefGoogle Scholar
  13. 13.
    S. Bhattacharya, A. L. Pope, R. T. I. Littleton, T. M. Tritt, V. Ponnambalam, Y. Xia and S. J. Poon, Appl. Phys. Lett. 77, 2476–2478 (2000).CrossRefGoogle Scholar
  14. 14.
    Q. Shen, L. Zhang, L. Chen, T. Goto and T. Hirai, J. Mater. Science Lett. 20, 2197–2199 (2001).CrossRefGoogle Scholar
  15. 15.
    Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G. P. Meisner and C. Uher, Appl. Phys. Lett. 79, 4165–4167 (2001).CrossRefGoogle Scholar
  16. 16.
    B. C. Sales, D. Mandrus and R. K. Williams, Science (Washington, D. C.) 272, 1325–1328 (1996).CrossRefGoogle Scholar
  17. 17.
    S. Katsuyama, Y. Shichijo, M. Ito, K. Majima and H. Nagai, J. Appl. Phys. 84, 6708–6712 (1998).CrossRefGoogle Scholar
  18. 18.
    M. Fornari and D. J. Singh, Phys. Rev. B 59, 9722–9724 (1999).CrossRefGoogle Scholar
  19. 19.
    G. S. Nolas, D. T. Morelli and T. M. Tritt, Annu. Rev. Mat. Science 29, 89–116 (1999).CrossRefGoogle Scholar
  20. 20.
    N. R. Dilley, E. D. Bauer, M. B. Maple, S. Dordevic, D. N. Basov, F. Freibert, T. W. Darling, A. Migliori, B. C. Chakoumakos and B. C. Sales, Phys. Rev. B 61, 4608–4614 (2000).CrossRefGoogle Scholar
  21. 21.
    H. Kitagawa, M. Hasaka, T. Morimura, H. Nakashima and S. i. Kondo, Mater. Res. Bull. 35, 185–192 (2000).CrossRefGoogle Scholar
  22. 22.
    H. Takizawa, M. Ito, K. Uheda and T. Endo, J. Cer. Soc. Jpn. 108, 530–534 (2000).CrossRefGoogle Scholar
  23. 23.
    N. R. Dilley, E. D. Bauer, M. B. Maple and B. C. Sales, J. Appl. Phys. 88, 1948–1951 (2000).CrossRefGoogle Scholar
  24. 24.
    J. S. Dyck, W. Chen, C. Uher, L. Chen, X. Tang and T. Hirai, J. Appl. Phys. 91, 3698–3705 (2002).CrossRefGoogle Scholar
  25. 25.
    G. A. Slack, in: CRC Handbook of Thermoelectrics(Editor: D. M. Rowe) (CRC Press, Boca Raton, FL, 1995), pp 407–440.Google Scholar
  26. 26.
    G. A. Slack, Mat. Res. Soc. Symp. Proc. 478, 47–54 (1997).CrossRefGoogle Scholar
  27. 27.
    H. Kleinke, Chem. Commun. (Cambridge), 2219–2220 (1998).Google Scholar
  28. 28.
    H. Kleinke, J. Mater. Chem. 9, 2703–2708 (1999).CrossRefGoogle Scholar
  29. 29.
    H. Kleinke, Inorg. Chem. 38, 2931–2935 (1999).CrossRefGoogle Scholar
  30. 30.
    H. Kleinke, J. Am. Chem. Soc. 122, 853–860 (2000).CrossRefGoogle Scholar
  31. 31.
    H. Kleinke, Chem. Soc. Rev. 29, 411–418 (2000).CrossRefGoogle Scholar
  32. 32.
    H. Kleinke, C. Ruckert and C. Felser, Eur. J. Inorg. Chem., 315–322 (2000).Google Scholar
  33. 33.
    SAINT Version 4, Version 4 ed., Siemens Analytical X-ray Instruments Inc., Madison, WL (1995).Google Scholar
  34. 34.
    SHELXTL Version 5.12, Version 5.12 ed., Reference Manual, Siemens Analytical X-Ray Systems, Inc, Madison, WI, 1996., Madison, WL (1995).Google Scholar
  35. 35.
    O. K. Andersen, Phys. Rev. B 12, 3060–3083 (1975).CrossRefGoogle Scholar
  36. 36.
    H. L. Skriver, The LMTO Method, Springer, Berlin (1984).CrossRefGoogle Scholar
  37. 37.
    L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064–2083 (1971).CrossRefGoogle Scholar
  38. 38.
    P. E. Blöchl, O. Jepsen and O. K. Andersen, Phys. Rev. B 49, 16223–33 (1994).CrossRefGoogle Scholar
  39. 39.
    P. Villars, Pearson’s Handbook, Desk Edition ed., American Society for Metals, Materials Park, OH (1997).Google Scholar
  40. H. Kleinke, J. Alloys Comp. 270, 136–141 (1998).CrossRefGoogle Scholar
  41. 41.
    H. Kleinke and B. Harbrecht, Z. Anorg Allg. Chem. 625, 1873–1877 (1999).CrossRefGoogle Scholar
  42. 42.
    A. Rehr and S. M. Kauzlarich, Acta Crystallogr. C 50, 1177–1178 (1994).CrossRefGoogle Scholar
  43. 43.
    A. Brown, Nature (London) 206, 502–503 (1965).CrossRefGoogle Scholar
  44. 44.
    F. J. DiSalvo, Science (Washington, D. C.) 285, 703–706 (1999).CrossRefGoogle Scholar
  45. 45.
    E. Dashjav, A. Szczepenowska and H. Kleinke, J. Mater. Chem. 12, 345–349 (2002).CrossRefGoogle Scholar
  46. 46.
    J. O. Sofo and G. D. Mahan, Phys. Rev. B 49, 4565–4570 (1994).CrossRefGoogle Scholar
  47. 47.
    H. Kleinke, Inorg. Chem. 40, 95–100 (2001).CrossRefGoogle Scholar
  48. 48.
    Y. Zhu and H. Kleinke, Z. Anorg. Allg. Chem. 628, in press (2002).Google Scholar
  49. 49.
    G. Lu, S. Lee, J. Lin, L. You, J. Sun and J. T. Schmidt, J. Solid State Chem. 164, 210–219 (2002).CrossRefGoogle Scholar
  50. 50.
    O. G. Karpinskii and B. A. Evseev, Izv. Akad. Nauk SSSR, Neorg. Mater. 5, 525–9 (1969).Google Scholar
  51. 51.
    G. Zwilling and H. Nowotny, Mh. Chem. 104, 668–675 (1973).Google Scholar
  52. 52.
    H. W. Knott, M. H. Muller and L. Heaton, Acta Crystallogr. 23, 549–555 (1967).CrossRefGoogle Scholar
  53. 53.
    O. Schwomma, A. Preisinger, H. Nowotny and A. Wittmann, Mh. Chem. 95, 1527–1537 (1964).Google Scholar
  54. 54.
    V. K. Zaitsev, in: CRC Handbook of Thermoelectrics(Editor: D. M. Rowe) (CRC Press, Boca Raton, FL, 1995), pp 299–309.Google Scholar
  55. 55.
    W. B. Bienert and F. M. Gillen, US Patent 3407037, (Martin-Marietta Corp.). DE, 1969.Google Scholar
  56. 56.
    W. Jeitschko and E. Parthé, Acta Crystallogr. 22, 417–430 (1967).CrossRefGoogle Scholar
  57. 57.
    W. B. Pearson, Acta Crystallogr. B 26, 1044–1046 (1970).CrossRefGoogle Scholar
  58. 58.
    G. Flieher, H. Völlenkle and H. Nowotny, Mh. Chem. 99, 2408–2415 (1968).Google Scholar
  59. 59.
    I. Elder, C.-S. Lee and H. Kleinke, Inorg Chem. 41, 538–545 (2002).CrossRefGoogle Scholar
  60. 60.
    C.-S. Lee and H. Kleinke, Eur. J. Inorg. Chem., 591–596 (2002).Google Scholar
  61. 61.
    H. Kleinke, Chem. Commun. (Cambridge), 1941–1942 (2000).Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Enkhthsetseg Dashjav
  • Yulia Zhu
  • Holger Kleinke
    • 1
  1. 1.Department of ChemistryUniversity of WaterlooCanada

Personalised recommendations