Advertisement

Clathrate Thermoelectrics

  • George S. Nolas
Chapter
Part of the Fundamental Materials Research book series (FMRE)

Abstract

The type I and II clathrate hydrate structure can be thought of as a derivative of the four coordinated diamond lattice structure. In the Ge diamond lattice there is not enough space to hold Sr atoms between the Ge atoms, for example. The presence of these “guests” induces a change in the Ge clathrate to a more open structure: the clathrate structure. These types of “open structured” compounds have unique properties that are of interest for thermoelectric applications.1, 2The fact that clathrate compounds can be synthesized to possess glass-like lattice thermal conductivity and the ability to vary the electronic properties by changing the doping level in semiconducting variants, along with relatively good electronic properties, indicates that this system is a Phonon-Glass Electron Crystal (PGEC) system3and therefore of interest for thermoelectric applications. The ideal PGEC system would possess poor thermal properties (such as that for amorphous materials) while also possessing good electrical properties (as in perfect crystals). From the definition of the dimensionless figure of merit (ZT = S 2 T/ρκwhere Sis the Seebeck coefficient, Tis the absolute temperature, ρis the resistivity and κthe thermal conductivity) it is clear that a PGEC system would possess optimal thermoelectric properties. The key however is to replace the traditional alloy phonon scattering, which predominantly scatters the highest frequency phonons, by a much lower frequency resonance or disorder type scattering. This is the case in these materials, due to their unique crystal structure, and is why these materials have a low thermal conductivity. In these materials certain aspects of investigations of “atomic engineering” on the nanoscale also presents itself through the role of the cage-like structures and the ability to fill the atomic cages with various types of atoms. Their crystal structure is one of the most conspicuous aspects of these compounds and directly determines much of their interesting and unique properties, including their thermoelectric properties, as will be described in detail below.

Keywords

Thermoelectric Property Seebeck Coefficient Acoustic Phonon Lattice Thermal Conductivity Bismuth Telluride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.S. Nolas, J.W. Sharp and H.J. Goldsmid, Thermoelectrics: Basics Principles and New Materials Developments(Springer-Verlag, Heidelberg, 2001).Google Scholar
  2. 2.
    G.A. Slack, in: “Thermoelectric Materials – New Directions and Approaches”, edited by T.M. Tritt, M.G. Kanatzidis, H.B. Lyon, Jr., and G.D. Mahan (Mat. Res. Soc. Symp. Proc. Vol. 478, Pittsburgh, PA, 1997), pp. 47–54.Google Scholar
  3. 3.
    G.A. Slack, in: CRC Handbook of Thermoelectrics, edited by D.M. Rowe (CRC Press, Boca Raton, FL, 1995), p. 407.Google Scholar
  4. 4.
    G.S. Nolas, G.A. Slack and S.B. Schujman: in Semiconductors and Semimetals Vol. 69, edited by T.M. Tritt (Academic Press, 2001) pp. 255 – 300.Google Scholar
  5. 5.
    G.S. Nolas, in: Thermoelectric Materials 1998 -- The Next Generation Materials for Small-Scale Refrigeration and Power Generation Applications, edited by T.M. Tritt, G. Mahan, H.B. Lyon, Jr. and M.G. Kanatzidis (Mater. Res. Soc. Symp. Proc. Vol. 545, Piittsburgh, PA, 1999), pp. 435–442.Google Scholar
  6. 6.
    V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin and D.M. Rowe,J. Appl. Phys. 87, 7871–7875 (2000).CrossRefGoogle Scholar
  7. 7.
    S. Paschen, W. Carrillo-Cabrera, A. Bentien, V.H. Tran, M. Baenitz, Y. Grin and F. Steglich,Phys. Rev. B 64, 214404/1-11 (2001).CrossRefGoogle Scholar
  8. 8.
    S. Paschen, V.H. Tran, M. Baenitz, W. Carrillo-Cabrera, Y. Grin and F. Steglich, Phys. Rev. B 65, 134435- 1-9(2002).CrossRefGoogle Scholar
  9. 9.
    L. Mollnitz, N.P. Blake and H. Matiu, J. Chem. Phys. 117, 1302–1312 (2002).CrossRefGoogle Scholar
  10. 10.
    G.A. Jeffery, in Inclusion Compounds, Vol. 1, edited by J.L. Atwood, J.E.D. Davies and D.D. MacNicol (Academic Press, New York, 1984) pp. 135–190.Google Scholar
  11. 11.
    G. S. Nolas, J. L. Cohn, G. A. Slack and S. B. Schujman, Appl. Phys. Lett. 73, 178–180 (1998).CrossRefGoogle Scholar
  12. 12.
    J.L. Cohn, G.S. Nolas, V. Fessatidis, T.H. Metcalf and G.A. Slack, Phys. Rev. Lett. 82, 779–782 (1999).CrossRefGoogle Scholar
  13. 13.
    G.S. Nolas, J.L. Cohn, J.S. Dyck, C. Uher and J. Yang, Phys. Rev.B 65, 165201/1-6 (2002).CrossRefGoogle Scholar
  14. 14.
    G.S. Nolas, T.J.R. Weakley, J.L. Cohn and R. Sharma, Phys. Rev. B 61, 3845–3850 (2000).CrossRefGoogle Scholar
  15. 15.
    B.C. Sales, B.C. Chakoumakos, R. Jin, J.R. Thompson and D. Mandrus, Phys. Rev. B 63, 245113/1-8 (2001).CrossRefGoogle Scholar
  16. 16.
    A. Bentien, B.B. Iverson, J.D. Bryan, G.D. Stucky, A.E.C. Palmqvist, A.J. Schultz and R.W. Henning, J. Appl. Phys. 91, 5694–5699 (2002).CrossRefGoogle Scholar
  17. 17.
    G.S. Nolas, B.C. Chakoumakos, B. Mahieu, G.J. Long and T.J.R. Weakley, Chem. Mater. 12, 1947–1953 (2000).CrossRefGoogle Scholar
  18. 18.
    V. Keppens, M. A. McGuire, A. Teklu, C. Laermans, B.C. Sales, D. Mandrus and B.C. Chakoumakos, Physica B 316-317, 95–100 (2002).CrossRefGoogle Scholar
  19. 19.
    G.S. Nolas and C.A. Kendziora,Phys. Rev. B 62, 7157–7161 (2000).CrossRefGoogle Scholar
  20. 20.
    J. Dong, O.F. Sankey, G.K. Ramachandran and P.F. McMillan, J. Appl. Phys. 87, 7726–7734 (2000).CrossRefGoogle Scholar
  21. 21.
    J. Dong and O.F. Sankey, J. Phys. Condens. Matter. 11, 6129–6145 (1999).CrossRefGoogle Scholar
  22. 22.
    C.W. Myles, J. Dong, O.F. Sankey, C.A. Kendziora and G.S. Nolas,Phys. Rev. B 65, 235208/1-10 (2002).CrossRefGoogle Scholar
  23. 23.
    M. Imai, K. Nishida, T. Kimura and K. Yamada, J. Alloys & Comp 335, 270–276 (2002).CrossRefGoogle Scholar
  24. 24.
    H. Kawaji, H. Horie, S. Yamanaka and M. Ishikawa, Phys. Rev. Lett. 74, 1427–1430 (1995).CrossRefGoogle Scholar
  25. 25.
    Y. Zhang, P.L. Lee, G.S.Nolas, and A.P. Wilkinson, Appl. Phys. Lett. 80, 2931–2933 (2002).CrossRefGoogle Scholar
  26. 26.
    B. C. Chakoumakos, B. C. Sales, D. G. Mandrus and G. S. Nolas, J. Alloys and Comp. 296, 80–86 (1999).CrossRefGoogle Scholar
  27. 27.
    B.C. Chakoumakos, B.C. Sales and D.G. Mandrus, J. Alloys & Comp 322, 127–134 (2001).CrossRefGoogle Scholar
  28. 28.
    S. Latturner, X. Bu, N. Blake, H. Metiu and G. Stucky, J. Solid State Chem. 151, 61–64 (2000).CrossRefGoogle Scholar
  29. 29.
    N.P. Blake, S. Latturner, J.D. Bryan, G.D. Stucky and H. Metiu,J. Chem. Phys. 115, 8060–8073 (2001).CrossRefGoogle Scholar
  30. 30.
    C.W. Myles, J. Dong and O.F. Sankey, Phys. Rev. B 64, 165202/1-11 (2001).CrossRefGoogle Scholar
  31. 31.
    see for example, N.F. Mott, J. Non-Cryst. Solids 1, 1 (1968).CrossRefGoogle Scholar
  32. 32.
    S. Groves and W. Paul, Phys. Rev. Lett. 11, 194–198 (1963).CrossRefGoogle Scholar
  33. 33.
    C. Cros, M. Pouchard and P. Hagenmuller,J. Solid State Chem. 2, 570–581 (1970).CrossRefGoogle Scholar
  34. 34.
    G.S. Nolas, D.G. Vanderveer, A.P. Wilkinson and J.L. Cohn, J. Appl. Phys. 91, 8970–8973 (2002).CrossRefGoogle Scholar
  35. 35.
    G.S. Nolas, D.T. Morelli, and T.M. Tritt, Annu. Rev. Mater. Sci. 29, 89–116 (1999), and references therein.CrossRefGoogle Scholar
  36. 36.
    C. Uher, in Semiconductors and Semimetals, Vol. 69, edited by Terry M. Tritt (Academic Press, New York, NY, 2000), pp. 139–254, and references therein.Google Scholar
  37. 37.
    B.C. Sales, D.G. Mandrus and B.C. Chakoumakos in: Semiconductors and Semimetals, Volume 70, edited by T.M. Tritt (Academic Press, NY, 2000), pp. 1–36.Google Scholar
  38. 38.
    G.S. Nolas, C.A. Kendziora, J. Gryko, J. Dong, A. Poddar, C.W. Myles and O.F. Sakey, J. Appl. Phys.submitted.Google Scholar
  39. 39.
    J. Dong, O.F. Sankey and G. Kern, Phys. Rev. B 60, 950–958 (1999).CrossRefGoogle Scholar
  40. 40.
    see also S. Bobev and S.C. Sevov,J. Solid State Chem. 153, 92 (2001).CrossRefGoogle Scholar
  41. 41.
    G.K. Ramachandran, J. Dong, O.F. Sankey and P.F. McMillan, Phys. Rev. B 63, 033102-1-4 (2000).CrossRefGoogle Scholar
  42. 42.
    S. Latturner, B.B. Iverson, J. Sepa, V. Srdanov and G. Stucky,Phys. Rev. B 63, 125403-1-8 (2001).CrossRefGoogle Scholar
  43. 43.
    J. Gryko, P.F. McMillan, R.F. Marzke, G.K. Ramachandran, D. Patton, S.K. Deb and O.F. Sankey, Phys. Rev. B 62, R7707–R7710 (2000).CrossRefGoogle Scholar
  44. 44.
    G.B Adams, M. O'Keeffe, A.A. Demkov, O.F. Sankey and Y-M. Huang, Physical Review B 49, 8048– 8053 (1994).Google Scholar
  45. 45.
    G.S. Nolas, M. Beekman, J. Gryko, G. Lamberton, T.M. Tritt and P.F. McMillan, Appl. Phys. Lett., submitted.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • George S. Nolas
    • 1
  1. 1.Department of PhysicsUniversity of South FloridaTampa

Personalised recommendations