Advertisement

Structure-Property Relations in Skutterudites

  • Ctirad Uher
Chapter
Part of the Fundamental Materials Research book series (FMRE)

Abstract

Vigorous research efforts over the past few years to identify new, efficient thermoelectric materials that would supercede the existing materials base of thermoelectrics has resulted in several interesting structures. A common feature of many of these novel thermoelectrics is a relatively open atomic configuration that offers numerous possibilities to modify the material with the aim of maximizing its thermoelectric efficiency. Among these novel thermoelectrics, skutterudites have attracted the greatest attention. An in-depth account of the physical, chemical, and materials issues pertaining to skutterudites has been published recently1, and the relevance of skutterudites to thermoelectricity was pointed out2. In the space available here, I will focus on the interrelation between the structural and bonding characteristics of skutterudite compounds and their transport properties that ultimately determine whether skutterudites will fulfill their promise as novel thermoelectric materials.

Keywords

Thermal Conductivity Power Factor Carrier Density Seebeck Coefficient Thermoelectric Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Uher, in Semiconductors and Semimetals, Vol.69, ed. T. M. Tritt, Academic Press, San Diego, pp. 139–253(2001).Google Scholar
  2. 2.
    G. S. Nolas, D. T. Morelli, and T. M. Tritt, Annu. Rev. Mater. Sci. 29, 89–116 (1999).CrossRefGoogle Scholar
  3. 3.
    A. F. Ioffe, in Semiconductor Thermoelements and Thermoelectric Cooling, London: Infosearch(1957).Google Scholar
  4. 4.
    H. J. Goldsmid and R. W. Douglas, Brit. J. Appl. Phys. 5, 386–390 (1954).CrossRefGoogle Scholar
  5. 5.
    L. D. Hicks and M. S. Dresselhaus Phys. Rev. B47, 12727–12731 (1993).CrossRefGoogle Scholar
  6. 6.
    T. C. Harman, P. J. Taylor, D. L. Spears, and M. P. Walsh, Proc. 18th Int. Conf. on Thermoelectrics, IEEE Catalog 99TH8407, Piskataway, N.J., pp. 280–284 (1999).Google Scholar
  7. 7.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Nature 413, 597–602 (2001).CrossRefGoogle Scholar
  8. 8.
    I. Oftedal, Z Kristallogr.A66, 517 (1928).Google Scholar
  9. 9.
    L. D. Dudkin, Sov. Phys.-Tech. Phys. 3216 –220 (1958). Google Scholar
  10. 10.
    L. D. Dudkin and N. Kh. Abrikosov, Sov. Phys.-Solid State 1, 126–133 (1959).Google Scholar
  11. 11.
    C. M. Pleass and R. D. Heyding, Canad J. Chem. 40, 590–600 (1962).CrossRefGoogle Scholar
  12. 12.
    W. Jeitschko and D. J. Brown, Acta Crystallog.B33, 3401–3406 (1977).Google Scholar
  13. 13.
    J.-P. Fleurial, A. Borschevsky, T. Caillat, D. T. Morelli, and G. P. Meisner, Proc. 15th International Conference on Thermoelectrics, IEEE Catalog 96TH8169, Piscataway, N.J., pp. 91–105 (1996).Google Scholar
  14. 14.
    B. Chen, J. X. Xu, C. Uher, D. T. Morelli, G. P. Meisner, J.-P. Fleurial, T. Caillat, and A. Borshchevsky, Phys. Rev. B 55, 1476–1480 (1997).CrossRefGoogle Scholar
  15. 15.
    B. C. Sales, D. Mandrus, and R. K. Williams, Science 272, 1325–1328 (1996).CrossRefGoogle Scholar
  16. 16.
    M. D. Hornbostel, E. J. Hyer, J. Thiel, and D. C. Johnson, J. Am. Chem. Soc.119, 2665–2668 (1997).CrossRefGoogle Scholar
  17. 17.
    V. Keppens, D. Mandrus, B. C. Sales, B. C. Chakoumakos, P. Dai, R. Coldea, M. B. Maple, D. A. Gajewski, E. J. Freeman, and S. Bennington, Nature395, 876–878 (1998).CrossRefGoogle Scholar
  18. 18.
    B. C. Sales, B. C. Chakoumakos, D. Mandrus, and J. W. Sharp, Proc. 18th International Conference on Thermoelectrics, IEEE Catalog 99TH8407, Piscataway, N. J., pp. 525–530 (1999).Google Scholar
  19. 19.
    B. C. Sales, MRS Bull. 23, 15–21 (1998).Google Scholar
  20. 20.
    D. J. Singh and W. E. Pickett, Phys. Rev. B 50, 11235–11238 (1994).CrossRefGoogle Scholar
  21. 21.
    J. O. Sofo and G. D. Mahan, Mat. Res. Soc. Symp. Proc.545, 315–320 (1999).CrossRefGoogle Scholar
  22. 22.
    L. Nordstrom and D. J. Singh, Phys. Rev. B 53, 1103–1108 (1996).CrossRefGoogle Scholar
  23. 23.
    L. D. Dudkin and N. Kh. Abrikosov, Zh. Neorg. Khim. 1, 2096–2105 (1956).Google Scholar
  24. 24.
    A. Walcharapasorn, R. C. DeMattei, R. S. Feigelson, T. Caillat, A. Borshchevsky, G. J. Snyder, and J.-P. Fleurial, J. Appl. Phys. 86, 6213–6217 (1999).CrossRefGoogle Scholar
  25. 25.
    J. W. Sharp, E. C. Jones, R. K. Williams, P. M. Martin, and B. C. Sales, J. Appl. Phys.78, 1013–1018 (1995).CrossRefGoogle Scholar
  26. 26.
    T. Caillat, J.-P. Fleurial, and A. Borshchevsky, Proc. 30th Intersociety Energy Conversion Engineering Conference, Amer. Soc. Mechan. Eng., (D. Y. Goswami, L. D. Kannberg, T. R. Mancini, S. Somasundram, eds.) Vol. 3, pp.83–86 (1995).Google Scholar
  27. 27.
    T. Caillat, A. Borshchevsky, and J.-P. Fleurial, J. Appl. Phys. 80, 4442–4449 (1996).CrossRefGoogle Scholar
  28. 28.
    G. S. Nolas, J. L. Cohn, and G. A. Slack, Phys. Rev. B 58, 164–170 (1998).CrossRefGoogle Scholar
  29. 29.
    B. C. Sales, D. Mandrus, B. C. Chakoumakos, V. Keppens, and J. R. Thompson, Phys. Rev. B 56, 15081–15089(1997).CrossRefGoogle Scholar
  30. 30.
    D. Mandrus, A. Migliori, T. W. Darling, M. F. Hundley, E. J. Peterson, and J. D. Thompson, Phys. Rev. B 52, 4926–4931 (1995).CrossRefGoogle Scholar
  31. 31.
    H. Anno, K. Hatada, H. Shimizu, K. Matsubara, Y. Notohara, T. Sakakibara, H. Tashiro, and K. Motoya, J. Appl. Phys.83, 5270–5276 (1998).CrossRefGoogle Scholar
  32. 32.
    J.-P. Fleurial, A. Borshchevsky, T. Caillat, D. T. Morelli, and G. P. Meisner, Proc. 15th International Conference on Thermoelectrics, IEEE Catalog 96TH8169, Piscataway, N. J., pp. 91–95 (1996).Google Scholar
  33. 33.
    A. Borshchevsky, J.-P. Fleurial, E. Allevato, and T. Caillat, Proc. 13th International Conference on Thermoelectrics, (B. Mathiprakasam, ed.), pp. 3–6, American Institute of Physics, N. Y., (1995).Google Scholar
  34. 34.
    D. T. Morelli and G. P. Meisner, J. Appl. Phys., 77, 3777–3781 (1995).CrossRefGoogle Scholar
  35. 35.
    J.-P. Fleurial, T. Caillat, and A. Borshchevsky, Mat. Res. Soc. Symp. Proc.478, 175–186 (1997).CrossRefGoogle Scholar
  36. 36.
    E. Arushanov, K. Fess, W. Kaefer, Ch. Kloc, and E. Bucher, Phys. Rev. B 56, 1911–1917 (1997).CrossRefGoogle Scholar
  37. 37.
    K. Fess, E. Arushanov, W. Kaefer, Ch. Kloc, K. Friemelt, and E. Bucher, Proc. 16th International Conference on Thermoelectrics, IEEE Catalog 97TH8291, Piscataway, N. J., pp. 347–350 (1997).Google Scholar
  38. 38.
    J. P. Odile, S. Soled, C. A. Castro, and A. Watd, Inorg. Chem. 17, 283–286 (1978).Google Scholar
  39. 39.
    J. P. Fleurial, T. Caillat, and A. Borshchevsky, Proc. 13th International Conference on Thermoelectrics, (B. Mathiprakasam, ed.), pp. 40–44, American Institute of Physics, N. Y., (1995).Google Scholar
  40. 40.
    B. N. Zobrina and L. D. Dudkin, Sov. Phys.-Solid State 1, 1668–1674 (1960).Google Scholar
  41. 41.
    T. Caillat, A. Borshchevsky, and J. P. Fleurial, Proc. 27th Intersociety Energy Conversion Engineering Conference, San Diego, CA, pp. 3.499–3.503 (1992).Google Scholar
  42. 42.
    G. S. Nolas, G. A. Slack, D. T. Morelli, T. M. Tritt, and A. C. Ehrlich, J. Appl. Phys. 79, 4002–4008 (1996).CrossRefGoogle Scholar
  43. 43.
    T. Caillat, A. Borshchevsky, and J.-P. Fleurial, Proc, 11th International Conference on Thermoelectrics, Univ. Arlington, TX (K. R. Rao, ed.), pp. 98–101 (1992).Google Scholar
  44. 44.
    G. A. Slack and V. G. Tsoukala, J. Appl. Phys. 76, 1665–1671 (1994).CrossRefGoogle Scholar
  45. 45.
    D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borschevsky, J. Vandersande, B. Chen, and C. Uher, Phys. Rev. B 51, 9622–9628 (1995).CrossRefGoogle Scholar
  46. 46.
    J. S. Dyck, W. Chen, J. Yang, G. P. Meisner, and C. Uher, Phys. Rev. B 65, 115204-1–115204-9 (2002).Google Scholar
  47. 47.
    C. Uher, B. Chen, S. Hu, D. T. Morelli, and G. P. Meisner, Mat. Res. Soc. Symp. Proc. 478, 315–320 (1997).CrossRefGoogle Scholar
  48. 48.
    R. Berman, in Thermal Conduction in Solids, Clarendon Press, Oxford, p. 152 (1976).Google Scholar
  49. 49.
    G. A. Slack, in Solid State Physics(F. Seitz and D. Tumbull, eds.) Vol. 34, Academic Press, N. Y., pp. 1–71 (1979).Google Scholar
  50. 50.
    D. C. Cahill and R. O. Pohl, Solid State Commun. 70, 927–930 (1989).CrossRefGoogle Scholar
  51. 51.
    A. V. Ioffe and A. F. Ioffe, Izv. Akad. Nauk. SSSR, Ser. Fiz. 20, 65–72 (1956).Google Scholar
  52. 52.
    J. Callaway and H. C. von Baeyer, Phys. Rev. 120, 1149–1154 (1960).CrossRefGoogle Scholar
  53. 53.
    G. A. Slack, Phys. Rev. 126, 427–441 (1962).CrossRefGoogle Scholar
  54. 54.
    A. Abeles, Phys. Rev. 131, 1906–1911 (1963).CrossRefGoogle Scholar
  55. 55.
    J. Yang, D. T. Morelli, G. P. Meisner, and C. Uher, in Thermal Conductivity 25/Thermal Expansion 13(C. Uher and D. T. Morelli, eds.), pp. 130-137, Technomic Publishing, Lancaster, PA (2000).Google Scholar
  56. 56.
    H. Tashiro, Y. Notohara, T. Sakakibara, H. Anno, and K. Matsubara, Proc. 16th International Conference on Thermoelectrics, IEEE Catalog Number 97TH8291, Piscataway, N. J., pp. 326-329 (1997).Google Scholar
  57. 57.
    H. Anno, K. Matsubara, Y. Notohara, T. Sakakibara, and H. Tashiro, J. Appl. Phys. 86, 3780–3786 (1999).CrossRefGoogle Scholar
  58. 58.
    K. L. Stokes, A. C. Ehrlich, and G. S. Nolas, Mat. Res. Soc. Symp. Proc. 545, 339–344 (1999).CrossRefGoogle Scholar
  59. 59.
    J. Yang, D. T. Morelli, G. P. Meisner, W. Chen, J. S. Dyck, and C. Uher, Phys. Rev. B 65, 094115-1–094115-5 (2002).CrossRefGoogle Scholar
  60. 60.
    S. Katsuyama, Y. Kanayama, M. Ito, K. Majima, and H. Nagai, J. Appl. Phys. 84, 6708–6712 (1998).CrossRefGoogle Scholar
  61. 61.
    T. Caillat, J. Kulleck, A. Borshchevsky, and J.-P. Fleurial, J. Appl. Phys. 79, 8419–8426 (1996).CrossRefGoogle Scholar
  62. 62.
    J.-P. Fleurial, T. Caillat, and A. Borshchevsky, Proc. 16th International Conference on Thermoelectrics, IEEE Catalog Number 97TH8291, Piscataway, N. J., pp. 1–11 (1997).Google Scholar
  63. 63.
    G. S. Nolas, V. G. Harris, T. M. Tritt, and G. A. Slack, J. Appl. Phys. 80, 6304–6308 (1996).CrossRefGoogle Scholar
  64. 64.
    G. A. Slack, J.-P. Fleurial, and T. Caillat, Naval Research News 18, 23–30 (1996).Google Scholar
  65. 65.
    D. T. Morelli, G. P. Meisner, B. Chen, S. Hu, and C. Uher, Phys. Rev. B 56, 7376–7383 (1997).CrossRefGoogle Scholar
  66. 66.
    G. A. Slack, in CRC Handbook of Thermoelectrics, ed. D. M. Rowe, pp. 407–40, Boca Raton, FL: CRC Press. (1995).Google Scholar
  67. 67.
    T. M. Tritt, G. S. Nolas, G. A. Slack, A. C. Ehrlich, D. J. Gillespie, and J. L. Cohn, J. Appl. Phys. 79, 8412– 8418(1996).CrossRefGoogle Scholar
  68. 68.
    G. P. Meisner, D. T. Morelli, S. Hu, J. Yang, and C. Uher, Phys. Rev. Lett. 80, 3551–3554 (1998).CrossRefGoogle Scholar
  69. 69.
    B. C. Sales, B. C. Chakoumakos, and D. Mandrus, Phys. Rev. B 61, 2475–2481 (2000).CrossRefGoogle Scholar
  70. 70.
    H. Anno, G. S. Nolas, K. Akai, K. Ashida, M. Matsuura, and K. Matsubara, Proc. 20th International Conference on Thermoelectricity, IEEE Catalog Number 01TH8589, Piscataway, N. J., pp. 61–64 (2001).Google Scholar
  71. 71.
    N. R. Dilley, E. D. Bauer, M. B. Maple, and B. C. Sales, J. Appl. Phys. 88, 1948–1951 (2000).CrossRefGoogle Scholar
  72. 72.
    E. Bauer, A. Galatanu, H. Michor, G. Hilscher, P. Rogl, P. Boulet, and H. Noel, Eur. Phys. J. B 14, 483–493 (2000).CrossRefGoogle Scholar
  73. 73.
    G. S. Nolas, M. Kaeser, R. T. Littleton, and T. M. Tritt, Appl. Phys. Lett. 77, 1855–1857 (2000).CrossRefGoogle Scholar
  74. 74.
    S. Berger, C. Paul, E. Bauer, A. P. Rogl, D. Kaczorowski, A. Saccone, R. Ferro, and C. Godart, Proc. 20th International Conference on Thermoelectrics, IEEE Catalog 01TH8589, Piscataway, N. J., pp. 77–80 (2001).Google Scholar
  75. 75.
    G. A. Lamberton, S. Bhattacharya, R. T. Littleton, M. A. Kaeser, R. H. Tedstrom, and T. M. Tritt, Appl. Phys. Lett. 80, 598–600 (2002).CrossRefGoogle Scholar
  76. 76.
    X. F. Tang, L. D. Chen, T. Goto, and T. Hirai,,J. Mater. Res. 15, 2276–2279 (2000).CrossRefGoogle Scholar
  77. 77.
    L. D. Chen, T. Kawahara, X. F. Tang, T. Goto, T. Hirai, J. S. Dyck, W. Chen, and C. Uher, J. Appl. Phys. 90, 1864–1868(2001).CrossRefGoogle Scholar
  78. 78.
    X. F. Tang, L. M. Zhang, R. Z. Yuan, L. D. Chen, T. Goto, T. Hirai, J. D. Dyck, W. Chen, and C. Uher, J. Mater. Res. 16, 3343–3346 (2001)CrossRefGoogle Scholar
  79. 79.
    J. S. Dyck, W. Chen, C. Uher, L. D. Chen, X. F. Tang, and T. Hirai, J. Appl. Phys. 91, 3698–3705 (2002).CrossRefGoogle Scholar
  80. 80.
    T. Caillat, J.-P. Fleurial, G. J. Snyder, and A. Borshchevsky, Proc. 20th International Conference on Thermoelectrics, IEEE Catalog Number 01TH8589, Piscataway, N. J., pp. 282–285 (2001).Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Ctirad Uher
    • 1
  1. 1.Department of PhysicsUniversity of MichiganAnn ArborUSA

Personalised recommendations