Phonon Heat Conduction in Superlattices

  • Bao Yang
  • Gang ChenEmail author
Part of the Fundamental Materials Research book series (FMRE)


Modern growth techniques such as molecular beam epitaxy (MBE) and metal- organic chemical vapor deposition (MOCVD) have enabled fabricating semiconductor superlattices (SLs) with monoatomic layer (ML) precision. Phonon propagation and scattering in SLs are of both fundamental and practical interest.1-4Phonon heat conduction in semiconductor SLs has attracted considerable attentions due to the applications in thermoelectric devices5-10and optoelectronic devices such as quantum well lasers and detectors.11,12To realize efficient thermoelectric devices, low thermal conductivity materials are sought because the performance of thermoelectric devices is determined by the figure-of-merit Z=S2σ/k, where k is thermal conductivity, σelectrical conductivity, and S Seebeck coefficient.13Superlattices are generally found to have low thermal conductivity values and thus have become candidates in the search for high efficient thermoelectric materials.5,7,14Their unique electronic properties, particularly the capability of tailoring their electronic properties through quantum size effects, also make them essential building blocks in many optoelectronic devices that must concurrently deal with the thermal management issues caused by their poor thermal conductivity. The freedom in tailoring the electronic properties in such quantum structures also leads to the approaches of band gap and carrier pocket engineering to improve the power factor (S2σ) of thermoelectric devices.5,6,14,15


Thermal Conductivity Boltzmann Transport Equation Phonon Transport Phonon Dispersion Relation Thermal Boundary Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Chen,Semiconductors and Semimetals 71, 203-259 (2001).CrossRefGoogle Scholar
  2. 2.
    C. Weisbuch and B. Vinter,Quantum Semiconductor Structures(Academic Press, San Diego, CA, 1991).Google Scholar
  3. 3.
    A. Shakouri, E.Y. Lee, D.L. Smith, V. Narayanamurti, and J. E. Bowers,Microscale Thermophys. Eng. 2, 37-42 (1998).CrossRefGoogle Scholar
  4. 4.
    G. Chen, B. Yang, and W.L. Liu, to appear in Heat Transfer and Fluid Flow in Microscale and Nanoscale Structures,edited by M. Faghri and B. Sunden.Google Scholar
  5. 5.
    L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B47, 16631-16634 (1993).CrossRefGoogle Scholar
  6. 6.
    M. S. Dresselhaus, Y.M. Lin, S.B. Cronin, O. Rabin, M.R. Black, G. Dresselhaus, and T. Koga,Semiconductors and Semimetals71, 1-121 (2001).CrossRefGoogle Scholar
  7. 7.
    G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, and T. Caillat, Int. Mat. Rev.,in press.Google Scholar
  8. 8.
    G.D. Mahan,Solid State Physics 51, 81-157 (1998).CrossRefGoogle Scholar
  9. 9.
    T.M. Tritt, Recent trend in thermoelectric materials research, in Semiconductor and Semimetals 69-71,edited by T.M. Tritt (Academic Press, San Diego, 2001).Google Scholar
  10. 10.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Nature 413, 597-602 (2001).Google Scholar
  11. 11.
    G. Chen,in Ann. Rev. Heat Transfer VII,edited by C.L. Tien, 1-57 (1996).Google Scholar
  12. 12.
    P. Bhattacharya, Semiconductor Optoelectronic Devices(Prentice Hall, Upper Saddle River, 1997).Google Scholar
  13. 13.
    H.J. Goldsmid, Thermoelectric Refrigeration (Plenum Press, New York, 1964).Google Scholar
  14. 14.
    L.D. Hicks, T.C. Harman, and M.S. Dresselhaus,Phys. Rev. B 53, 10493-10496 (1996).CrossRefGoogle Scholar
  15. 15.
    T. Koga, X. Sun, S.B. Cronin, and M.S. Dresselhaus,Appl. Phys. Lett. 73, 2950-2952 (1998).CrossRefGoogle Scholar
  16. 16.
    D.G. Cahill, Rev. Sci. Instrum. 61, 802-808 (1990).CrossRefGoogle Scholar
  17. 17.
    S.M. Lee, D.G. Cahill, and R. Venkatasubramanian,Appl. Phys. Lett.70, 2957-2959 (1997).CrossRefGoogle Scholar
  18. 18.
    T. Borca-Tasciuc, W.L. Liu, T. Zeng, D.W. Song, CD. Moore, G. Chen, K.L. Wang, M.S. Goorsky, T. Radetic, R. Gronsky, T. Koga, and M.S. Dresselhaus, Superlattices and Microstructures 28, 119-206 (2000).Google Scholar
  19. 19.
    T. Borca-Tasciuc, A. R. Kumar, and G. Chen,Rev. Sci. Instrum. 72, 2139-2147 (2001).CrossRefGoogle Scholar
  20. 20.
    W.L. Liu, T. Borca-Tasciuc, G. Chen, J.L. Liu, and K.L. Wang,J. Nanoscience and Nanotechnology 1, 39- 42 (2001).Google Scholar
  21. 21.
    S.T. Huxtable, A.R. Abramson, CL. Tien, A. Majumdar, C. LaBounty, X. Fan, G. Zeng, J. Bower, and E.T. Croke,Appl. Phys. Lett. 80, 1737-1739 (2002).CrossRefGoogle Scholar
  22. 22.
    R. Venkatasubramanian,Phys. Rev. B 61, 3091-3097 (2000).CrossRefGoogle Scholar
  23. 23.
    T. Borca-Tasciuc, D. Achimov, W.L. Liu, G. Chen, H. Ren, C.H. Lin, and S.S. Pei,Microscale Thermophys. Eng. 5, 225-231 (2001).CrossRefGoogle Scholar
  24. 24.
    S.T. Huxtable, A. Shakouri, C LaBounty, X. Fan, P. Abraham, Y.J. Chiu, J.E. Bowers, and A. Majumdar, Microscale Thermophys. Eng. 4, 197-203 (2000).Google Scholar
  25. 25.
    D.W. Song, W.L. Liu, T. Zeng, T. Borca-Tasciuc, G. Chen, C Caylor, and T.D. Sands,Appl. Phys. Lett. 77, 3854-3856 (2000).CrossRefGoogle Scholar
  26. 26.
    D.G. Cahill, A. Bullen, and S. M. Lee,High Temperatures - High Pressures 32, 135-142 (2000).CrossRefGoogle Scholar
  27. 27.
    B. Yang, W.L. Liu, J.L. Liu, K.L. Wang, and G. Chen, to appear in Appl. Phys. Lett.. 28. I. Hatta, Y. Sasuga, R. Kato, A. Maesono, Rev. Sci. Instrum. 56, 1643-1647 (1985).CrossRefGoogle Scholar
  28. 28.
    I. Hatta, Y. Sasuga, R. Kato, A. Maesono, Rev. Sci. Instrum. 56, 1643–1647 (1985).CrossRefGoogle Scholar
  29. 29.
    T. Yao,Appl. Phys. Lett. 51, 1798-1800 (1987).CrossRefGoogle Scholar
  30. 30.
    G. Chen, CL. Tien, X. Wu, and J.S. Smith,J. Heat Transfer 116, 325-331 (1994).CrossRefGoogle Scholar
  31. 31.
    X.Y. Yu, G. Chen, A. Verma, and J.S. Smith,Appl. Phys. Lett. 67, 3554-3556 (1995).CrossRefGoogle Scholar
  32. 32.
    H. Beyer, J. Nurnus, H. Bottner, Roch T Lambrecht, and G. Bauer, Appl. Phys. Lett. 80, 1216-1218 (2002). 33. I. Yamasaki, R. Yamanaka, M. Mikami, H. Sonobe, Y. Mori, and T. Sasaki, Proc. 17th Int. Conf. on Thermoelectrics, ICT'98, 210-213 (1998).Google Scholar
  33. 33.
    I. Yamasaki, R. Yamanaka, M. Mikami, H. Sonobe, Y. Mori, and T. Sasaki, Proc. 17th Int. Conf. on Thermoelectrics, ICT’98, 210–213 (1998).Google Scholar
  34. 34.
    F. Volklein,Thin Solid Films 188, 27-33 (1990).CrossRefGoogle Scholar
  35. 35.
    X. Zhang and CP. Grigoropoulos,Rev. Sci. Instrum. 66, 1115-1120 (1995).CrossRefGoogle Scholar
  36. 36.
    R. Venkatasubramanian, E. Siivola, and T. S. Colpitis, Proc. of 17th Int. Thermoelectrics Conf, Nagoya, Japan, 191-196 (1998).Google Scholar
  37. 37.
    K.E. Goodson and M.I. Flik,Appl. Mech. Rev. 47,101-112 (1994).CrossRefGoogle Scholar
  38. 38.
    CA. Paddock and G.L. Eesley,J. Appl. Phys. 60, 285-290 (1986).CrossRefGoogle Scholar
  39. 39.
    W.S. Capinski, H.J. Maris, T. Ruf, M. Cardona, K. Ploog, and D.S. Katzer,Phys. Rev. B 59, 8105-8113 (1999).CrossRefGoogle Scholar
  40. 40.
    W.S. Capinski and H.J. Maris,Physica B, 219&220, 699-701 (1996).Google Scholar
  41. 41.
    K.E. Goodson, O.W. Kading, M. Rosier, and R. Zachai,J. Appl. Phys. 77, 1385-1392 (1995).CrossRefGoogle Scholar
  42. 42.
    M.N. Touzelbaev, P. Zhou, R. Venkatasubramanian, and K.E. Goodson,J. Appl. Phys. 90, 763-767 (2001).CrossRefGoogle Scholar
  43. 43.
    D. Gammon, B.V. Shanabrook, and D.S. Katzer,Phys. Rev. Lett. 67, 1547-50 (1991).CrossRefGoogle Scholar
  44. 44.
    T. Ruf, J. Spitzer, V.F. Sapega, V.I. Belitsky, M. Cardona, and K. Ploog,Phys. Rev. B 50, 1792-806 (1994).CrossRefGoogle Scholar
  45. 45.
    J. M. Ziman, Electrons and Phonons (Clarendon, Oxford, 2001).CrossRefGoogle Scholar
  46. 46.
    S. Sze, Physics of Semiconductor Devices (New York: Wiley, 2nd Ed. 1981).Google Scholar
  47. 47.
    E.T. Swartz, and R.O. Pohl,Rev Modern Phys. 61, 605-668 (1989).CrossRefGoogle Scholar
  48. 48.
    A. Majumdar,J. Heat Transfer 115, 7-17 (1993).CrossRefGoogle Scholar
  49. 49.
    G. Chen, and C. L. Tien,J. Thermophys, and Heat Transfer, 7, 311-318 (1993).CrossRefGoogle Scholar
  50. 50.
    G. Chen, and T. Zeng,Microscale Thermophys. Eng. 5, 71-88 (2001).CrossRefGoogle Scholar
  51. 51.
    G. Chen,Phys. Rev. B 57, 14958-14973 (1998).CrossRefGoogle Scholar
  52. 52.
    D.A. Young and H.J. Maris,Phys. Rev. B 40, 3685-3693 (1989).CrossRefGoogle Scholar
  53. 53.
    J. Callaway,Phys. Rev. 113, 1046-1051 (1959).CrossRefGoogle Scholar
  54. 54.
    P. Hyldgaard and G.D. Mahan,Phys. Rev. B 56, 10754-10757 (1997).CrossRefGoogle Scholar
  55. 55.
    G. Chen,ASMEJ. Heat Transfer 119, 220-229 (1997).CrossRefGoogle Scholar
  56. 56.
    M. Born and E. Wolf, Principles of Optics (6th Ed. Pergamon Press, 1993).Google Scholar
  57. 57.
    G. Chen,J. Heat Transfer 121, 945-953 (1999).CrossRefGoogle Scholar
  58. 58.
    B. Yang and G. Chen, unpublished.Google Scholar
  59. 59.
    S. Tamura, Y. Tanaka, and H.J. Maris,Phys. Rev. B 60, 2627-2630 (1999).CrossRefGoogle Scholar
  60. 60.
    W.E. Bies, R.J. Radtke, and H. Ehrenreich,J. Appl. Phys. 88, 1498-1503 (2000).CrossRefGoogle Scholar
  61. 61.
    B. Yang and G. Chen,Microscale Thermophys. Eng. 5, 107-116 (2001).CrossRefGoogle Scholar
  62. 62.
    CR. Tellier, and A.J. Tosser, Size Effects in Thin Films (Elsevier, Amsterdam, 1982).Google Scholar
  63. 63.
    G. Chen and M. Neagu,Appl. Phys. Lett. 71, 2761-2763 (1997).CrossRefGoogle Scholar
  64. 64.
    P. Hyldgaard and G.D. Mahan,Thermal Conductivity 23, 172-182 (1996).Google Scholar
  65. 65.
    S.Y. Ren and J. D. Dow,Phys. Rev. B 25, 3750-3755 (1982).CrossRefGoogle Scholar
  66. 66.
    M.V. Simkin and G.D. Mahan,Phys. Rev. Lett. 84, 927-930 (2000).CrossRefGoogle Scholar
  67. 67.
    B. Yang and G. Chen, Presented at ICT'2002, Long Beach, CA, USA, Aug. 25-29,2002.Google Scholar
  68. 68.
    B. Daly, H. Maris, K. Imamura, and S. Tamura,Phys. Rev. B 66, 024301-024306 (2002).Google Scholar
  69. 69.
    S.G. Volz and G. Chen,Phys. Rev. B 61, 2651-2656 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentMassachusetts Institute of Technology
  2. 2.Mechanical and Aerospace Engineering DepartmentUniversity of California at Los Angeles

Personalised recommendations