Random and Integrable Models in Mathematics and Physics

  • Pierre van MoerbekeEmail author
Part of the CRM Series in Mathematical Physics book series (CRM)


During the last 15 years or so, and since the pioneering work of E. Wigner, F. Dyson and M.L. Mehta, random matrix theory, combinatorial and perco- lation questions have merged into a very lively area of research, pro ducing an outburst of ideas, techniques and connections; in particular, this area contains a number of strikingly beautiful gems. The purpose of these five Montreal lectures is to present some of these gems in an elementary way, to develop some of the basic tools and to show the interplay between these topics. These lec- tures were written to be elementary, informal and reasonably self-contained and are aimed at researchers wishing to learn this vast and beautiful subject. My purpose was to explain these topics at an early stage, rather than give the most general formulation. Throughout, my attitude has been to give what is strictly necessary to understand the subject. I have tried to provide the reader with plenty of references, although I may and probably will have omitted some of them; if so, my apologies!


Integrable Model Orthogonal Polynomial Young Diagram Young Tableau Random Matrix Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Adler, T. Shiota, P. van Moerbeke: Phys. Lett. A 208, 67 (1995)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    M. Adler, T. Shiota, P. van Moerbeke: Duke Math. J. 94, 379 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    M. Adler, P. van Moerbeke: Duke Math. J. 80, 863 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    M. Adler, P. van Moerbeke: Internat. Math. Res. Notices 1997, 555 (1997)zbMATHCrossRefGoogle Scholar
  5. 5.
    M. Adler, P. van Moerbeke: Comm. Math. Phys. 203, 185 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    M. Adler, P. van Moerbeke: Comm. Math. Phys. 207, 589 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    M. Adler, P. van Moerbeke: Ann. of Math. 149, 921 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    M. Adler, P. van Moerbeke: Comm. Pure Appl. Math. 54, 153 (2000)CrossRefGoogle Scholar
  9. 9.
    M. Adler, P. van Moerbeke: Ann. of Math. 153, 149 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    M. Adler, P. van Moerbeke: Adv. Math 181, 190 (2003)CrossRefGoogle Scholar
  11. 11.
    M. Adler, P. van Moerbeke: Comm. Pure Appl. Math. 58, 362 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    M. Adler, P. van Moerbeke: ForthcomingGoogle Scholar
  13. 13.
    M. Adler, P. van Moerbeke, P. Vanhaecke: arXiv:math-ph/0612064Google Scholar
  14. 14.
    D. Aldous, P. Diaconis: Probab. Theory Related Fields 103, 199 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    D. Aldous, P. Diaconis: Bull. Amer. Math. Soc. (N.S.) 36, 413 (1999)Google Scholar
  16. 16.
    K. Aomoto: SIAM J. Math. Anal. 18, 545 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    R.M. Baer, P. Brock: Math. Comp. 22, 385 (1968)MathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Baik, R. Buckingham, J. DiFranco: arXiv:0704.3636Google Scholar
  19. 19.
    J. Baik, P. Deift, K. Johansson: J. Amer. Math. Soc., 36, 1119 (1999)MathSciNetCrossRefGoogle Scholar
  20. 20.
    J. Baik, P. Deift, K. Johansson: Geom. Funct. Anal. 10, 702 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Yu. Baryshnikov: Probab. Theory Related Fields 119, 256 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    E. Basor, H. Widom: Integral Equations Operator Theory 37, 397 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    A. Borodin, A. Okounkov: Integral Equations Operator Theory 37, 386 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    A. Borodin, A. Okounkov, G. Olshanski: J. Amer. Math. Soc. 13, 481 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    A. Borodin, G. Olshanski: z-measures on partitions, Robinson–Schensted–Knuth correspondence, and β = 2 random matrix ensembles. In: Random matrices and their applications, ed by P. Bleher, A. Its (Cambridge Univ. Press, Cambridge 2001) pp 71–94Google Scholar
  26. 26.
    A. Borodin, G. Olshanski: Comm. Math. Phys. 211, 335–358 (2001)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    R. Carter, G. Segal, I. MacDonald: Lectures on Lie Groups and Lie Algebras (Cambridge Univ. Press, Cambridge 1995)zbMATHGoogle Scholar
  28. 28.
    C.M. Cosgrove: Stud. Appl. Math. 104, 171 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    C.M. Cosgrove, G. Scoufis: Stud. Appl. Math. 88, 25 (1993)MathSciNetzbMATHGoogle Scholar
  30. 30.
    E. Date, M. Kashiwara, M. Jimbo, T. Miwa: Transformation groups for soliton equations, In: Nonlinear Integrable Systems – Classical Theory and quantum Theory, ed by M. Jimbo, T. Miwa (World Sci. Publishing, Singapore 1983) pp 39–119Google Scholar
  31. 31.
    P.A. Deift: Orthogonal Polynomials and Random Matrices : A Riemann–Hilbert Approach (Amer. Math. Soc., Providence RI 1999)Google Scholar
  32. 32.
    P. Deift, A. Its, I. Krasovsky, X. Zhou: arXiv:math/0601535v1Google Scholar
  33. 33.
    E. Dueñez: Random matrix ensembles associated to compact symmetric spaces. PhD Thesis, Princeton University, Princeton (2001)Google Scholar
  34. 34.
    F. Dyson: Comm. Math. Phys. 47, 171 (1976)MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. 35.
    P. Erdös, G. Szekeres: Compositio Math. 2, 463 (1935)MathSciNetzbMATHGoogle Scholar
  36. 36.
    J. Faraut: Introduction a l’analyse des matrices aléatoires. Cours de DEA, Université Pierre et Marie Curie (2001-2002)Google Scholar
  37. 37.
    M.E. Fisher: J. Stat. Phys. 34, 669 (1984)ADSGoogle Scholar
  38. 38.
    P.J. Forrester: Nucl. Phys. B 402, 709 (1993)MathSciNetADSzbMATHCrossRefGoogle Scholar
  39. 39.
    P.J. Forrester: arXiv:nlin.SI/0005064Google Scholar
  40. 40.
    P.J. Forrester: J. Phys. A 34, L417 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  41. 41.
    P.J. Forrester: Log-Gases and Random Matrices. Lecture notesGoogle Scholar
  42. 42.
    P.J. Forrester, N. Witte: Comm. Pure Appl. Math. 55, 679 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    P.J. Forrester, N. Witte: arXiv:math-ph/0204008Google Scholar
  44. 44.
    J.S. Geronimo, K.M. Case: J. Math. Phys. 20, 299 (1979)MathSciNetADSzbMATHCrossRefGoogle Scholar
  45. 45.
    I.M. Gessel: J. Combin. Theory Ser. A 53, 257 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    D.J. Grabiner: J. Combin. Theory Ser. A 97, 285 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    C. Greene: Adv. in Math. 14, 254 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    L. Haine, E. Horozov: Bull. Sci. Math. 117, 485 (1993)MathSciNetzbMATHGoogle Scholar
  49. 49.
    L. Haine, J.-P. Semengue: J. Math. Phys. 40, 2117 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  50. 50.
    J.M. Hammersley: A few seedlings of research. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol 1, ed by L.M. Le Cam, J. Neyman, E.L. Scott (Univ. California Press, Berkeley CA 1972) pp 345–394Google Scholar
  51. 51.
    J. Harnad: J. Nonlinear Math Phys. 9, 530 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  52. 52.
    S.P. Hastings, J.B. McLeod: Arch. Rational Mech. Anal. 73, 31 (1980)MathSciNetADSzbMATHCrossRefGoogle Scholar
  53. 53.
    H. Hotelling: Biometrika, 28 321 (1936)zbMATHGoogle Scholar
  54. 54.
    M. Jimbo, T. Miwa, Y. Mori, M. Sato: Phys. D 1, 80 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    K. Johansson: Duke Math. J. 91, 151 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    K. Johansson: Math. Res. Lett. 5, 63 (1998)MathSciNetADSzbMATHGoogle Scholar
  57. 57.
    K. Johansson: Comm. Math. Phys., 209, 437 (2000)MathSciNetADSzbMATHCrossRefGoogle Scholar
  58. 58.
    K. Johansson: Ann. of Math. 153, 259 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    K. Johansson: Comm. Math. Phys. 242, 277 (2003)MathSciNetADSzbMATHGoogle Scholar
  60. 60.
    K. Johansson: arXiv:math/0306216Google Scholar
  61. 61.
    V. Kac: Infinite-Dimensional Lie Algebras (Cambridge Univ. Press, Cammbridge 1983)zbMATHGoogle Scholar
  62. 62.
    V. Kac, A. Raina: Highest Weight Representation of Infinite-Dimensional Lie Algebras (World Sci. Publishing, Singapore 1987)Google Scholar
  63. 63.
    J. Kaneko: SIAM J. Math. Anal. 24, 1086 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    S. Kerov: The boundary of Young tableaux and random Young tableaux. In: Formal Power Series and Algebraic Combinatorics, ed by L.J. Billera, C. Greene, R. Simion, R.P. Stanley (Amer. Math. Soc., Providence RI 1996) pp 133–158Google Scholar
  65. 65.
    R. Koekoek, R.F. Swarttouw: The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue. Report 98-17, Dept. of Technical Mathematics and Informatics, Delft Univ. of Technology (1998)Google Scholar
  66. 66.
    J. Krug, H. Spohn: Kinetic roughening of growing interfaces. In: Solids far from Equilibrium : Growth, Morphology and Defects, ed by C. Godrèche (Cambridge Univ. Press, Cambridge 1992) pp 479–582Google Scholar
  67. 67.
    B.F. Logan and L.A. Shepp: Adv. in Math. 26, 206 (1977)Google Scholar
  68. 68.
    I.G. MacDonald: Symmetric Functions and Hall Polynomials, 2nd edn (Clarendon Press, New York 1995)zbMATHGoogle Scholar
  69. 69.
    M.L. Mehta: Random Matrices, 2nd edn (Academic Press, Boston MA 1991)zbMATHGoogle Scholar
  70. 70.
    R.J. Muirhead: Aspects of Multivariate Statistical Theory (John Wiley & Sons, New York 1982)zbMATHCrossRefGoogle Scholar
  71. 71.
    A.F. Nikiforov, S.K. Suslov, V.B. Uvarov: Classical Orthogonal Polynomials of a Discrete Variable (Springer, Berlin 1991)zbMATHGoogle Scholar
  72. 72.
    A. Odlyzko, E.M. Rains: On longest increasing subsequences in random permutations. AT&T Labs, Florham Park NJ (1998)Google Scholar
  73. 73.
    A. Okounkov: Random matrices and random permutations, Internat. Math. Res. Notices 2000, 1043 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    A. Okounkov: SL(2) and z-measures. In: Random Matrix Models and Their Applications, ed by P. Bleher, A. Its (Cambridge Univ. Press, Cambridge, 2001) pp 407–420Google Scholar
  75. 75.
    A. Okounkov: Selecta Math. (N.S.) 7, 57 (2001)Google Scholar
  76. 76.
    L.A. Pastur: Teoret. Mat. Fiz. 10, 102 (1972); Theoret. and Math. Phys. 10, 67 (1972)Google Scholar
  77. 77.
    M. Prähofer, H. Spohn: J. Stat. Phys. 108, 1071 (2002)zbMATHCrossRefGoogle Scholar
  78. 78.
    B.E. Sagan: The Symmetry Group (Wadsworth & Brooks, Pacific Grove CA 1991)Google Scholar
  79. 79.
    T. Seppäläinen: Probab. Theory Related Fields, 112, 221 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    R.P. Stanley: Enumerative Combinatorics, vol 1 (Cambridge Univ. Press, Cambridge 1997).zbMATHGoogle Scholar
  81. 81.
    R.P. Stanley: Enumerative Combinatorics, vol 2 (Cambridge Univ. Press, Cambridge 1999)CrossRefGoogle Scholar
  82. 82.
    D. Stanton, D. White: Constructive Combinatorics, (Springer, New York 1986)zbMATHGoogle Scholar
  83. 83.
    G. Szegő: Orthogonal Polynomials, 4th edn (Amer. Math. Soc., Providence RI 1975)Google Scholar
  84. 84.
    C. Tracy, H. Widom: Introduction to random matrices. In: Geometric and Quantum Aspects of Integrable Systems, ed by G.F. Helminck (Springer, Berlin, 1993) pp 103–130CrossRefGoogle Scholar
  85. 85.
    C. Tracy, H. Widom: Comm. Math. Phys. 159, 151 (1994)MathSciNetADSzbMATHCrossRefGoogle Scholar
  86. 86.
    C. Tracy, H. Widom: Comm. Math. Phys. 207, 665 (1999)MathSciNetADSzbMATHCrossRefGoogle Scholar
  87. 87.
    C. Tracy, H. Widom: Probab. Theory Related Fields 119, 350 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    C. Tracy, H. Widom: Distribution functions for largest eigenvalues and their applications. In: Proceedings of the International Congress of Mathematicians, vol I, ed by T. Li (Higher Education Press, Beijing 2002) pp 587–596Google Scholar
  89. 89.
    S.M. Ulam, Monte-Carlo calculations in problems of mathematical physics. In: Modern Mathematics for the Engineers, ed by E.F. Beckenbach (McGraw-Hill, New York Toronto London 1961) pp 261-281Google Scholar
  90. 90.
    P. van Moerbeke: Integrable lattices: random matrices and random permutations. In: Random Matrix Models and Their Applications, ed by P. Bleher, A. Its (Cambridge Univ. Press, Cambridge, 2001) pp 321–406Google Scholar
  91. 91.
    J. Verbaarschot: Topics in random matrix theory. Lectures, Stony Brook University, Stony Brook NYGoogle Scholar
  92. 92.
    A.M. Vershik, S.V. Kerov: Soviet Math. Dokl. 18, 527 (1977).zbMATHGoogle Scholar
  93. 93.
    A.M. Vershik, S.V. Kerov: Funct. Anal. and Appl. 19, 21 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    H. Widom: Comm. Math. Phys. 171, 159 (1995)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Département de MathématiquesUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Department of MathematicsBrandeis UniversityWalthamUSA

Personalised recommendations