Integral Operators in Random Matrix Theory

  • Harold WidomEmail author
Part of the CRM Series in Mathematical Physics book series (CRM)


In this section we present some of the basic operator theory required before the applications to random matrix theory can be made.


Integral Operator Matrix Kernel Trace Class Random Matrix Theory Trace Norm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.J. Bowick, E. Brézin: Phys. Lett. B 268, 21 (1991)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    N. Dunford, J. Schwartz: Linear Operators. II. Spectral Theory (Interscience, New York 1963)Google Scholar
  3. 3.
    P.J. Forrester: Nucl. Phys. B 402, 709 (1993)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    I.C. Gohberg, M.G. Krein: Introduction to the Theory of Linear Nonselfadjoint Operators, vol. 18 (Amer. Math. Soc., Providence 1967)Google Scholar
  5. 5.
    M.L. Mehta: Random Matrices, 2nd. ed. (Academic Press, San Diego 1991)zbMATHGoogle Scholar
  6. 6.
    M.L. Mehta: Random Matrices, 3rd. ed. (Academic Press, San Diego 2004)zbMATHGoogle Scholar
  7. 7.
    A. Pietsch: Eigenvalues and s-Numbers (Cambridge University Press, Cambridge 1987)zbMATHGoogle Scholar
  8. 8.
    B. Simon: Adv. Math. 24, 244 (1977)zbMATHGoogle Scholar
  9. 9.
    C.A. Tracy, H. Widom: Commun. Math. Phys. 163, 48 (1994)MathSciNetCrossRefGoogle Scholar
  10. 10.
    C.A. Tracy, H. Widom: J. Stat. Phys. 92, 809 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    C.A. Tracy, H. Widom: Commun. Math. Phys. 252, 7 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversity of CaliforniaSanta CruzUSA

Personalised recommendations