Advertisement

Lectures on Random Matrix Models

The Riemann–Hilbert Approach
  • Pavel M. BleherEmail author
Chapter
Part of the CRM Series in Mathematical Physics book series (CRM)

Summary

This is a review of the Riemann–Hilbert approach to the large N asymptotics in random matrix models and its applications. We discuss the following topics: random matrix models and orthogonal polynomials, the Riemann–Hilbert approach to the large N asymptotics of orthogonal polynomials and its applications to the problem of universality in random matrix models, the double scaling limits, the large N asymptotics of the partition function, and random matrix models with external source.

Keywords

Riemann Surface Orthogonal Polynomial Random Matrix Edge Point Equilibrium Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Adler, P. van Moerbeke: Ann. Math. 153 149, (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    M. Adler, P. van Moerbeke: Ann. Probab. 33, 1326 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    M. Adler, P. van Moerbeke: arXiv:math.PR/0509047Google Scholar
  4. 4.
    A.I. Aptekarev: J. Comput. Math. Appl. 99, 423 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    A.I. Aptekarev, P.M. Bleher, A.B.J. Kuijlaars: Commun. Math. Phys. 259, 367 (2005)MathSciNetADSCrossRefzbMATHGoogle Scholar
  6. 6.
    A.I. Aptekarev, A. Branquinho, and W. Van Assche: Trans. Amer. Math. Soc. 355, 3887 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J. Baik, P. Deift, K. Johansson: J. Amer. Math. Soc. 12, 1119 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    J. Baik, T. Kriecherbauer, K.T.-R. McLaughlin, P.D. Miller: Discrete Orthogonal Polynomials (Princeton Univ. Press, Princeton NJ 2006)Google Scholar
  9. 9.
    R. Beals, P.A. Deift, C. Tomei: Direct and Inverse Scattering on the Line (Amer. Math. Soc., Providence, RI 1988)zbMATHGoogle Scholar
  10. 10.
    M. Bertola, B. Eynard, J. Harnad: J. Phys. A 36, 3067 (2003)MathSciNetADSCrossRefzbMATHGoogle Scholar
  11. 11.
    M. Bertola, B. Eynard, J. Harnad: Commun. Math. Phys. 243, 193 (2003)MathSciNetADSCrossRefzbMATHGoogle Scholar
  12. 12.
    M. Bertola, B. Eynard, J. Harnad: Commun. Math. Phys. 263, 401 (2006)MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. 13.
    M. Bertola, M.Y. Mo: arXiv:math-ph/0605043Google Scholar
  14. 14.
    D. Bessis, C. Itzykson, J.-B. Zuber: Adv. Applied Math. 1, 109 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    P.M. Bleher, B. Eynard: J. Phys. A 36, 3085 (2003)MathSciNetADSCrossRefzbMATHGoogle Scholar
  16. 16.
    P.M. Bleher, V. Fokin: Commun. Math. Phys. 268, 223 (2006)MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. 17.
    P.M. Bleher, A.R. Its: Ann. Math. 150 185, (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    P.M. Bleher, A.R. Its: Commun. Pure Appl. Math., 56, 433 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    P.M. Bleher, A.Its: Ann. Inst. Fourier 55, 1943 (2005)MathSciNetzbMATHGoogle Scholar
  20. 20.
    P.M. Bleher, A.B.J. Kuijlaars: Int. Math. Res. Not. 2004, 109 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    P.M. Bleher, A.B.J. Kuijlaars, Commun. Math. Phys. 252, 43 (2004)MathSciNetADSCrossRefzbMATHGoogle Scholar
  22. 22.
    P.M. Bleher, A.B.J. Kuijlaars: Ann. Inst. Fourier 55, 2001 (2005)MathSciNetzbMATHGoogle Scholar
  23. 23.
    P.M. Bleher, A.B.J. Kuijlaars, Commun. Math. Phys. 270, 481 (2006)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    G. Bonnet, F. David, B. Eynard: J. Phys. A 33, 6739 (2000)MathSciNetADSCrossRefzbMATHGoogle Scholar
  25. 25.
    A. Boutet de Monvel, L.A. Pastur, M. Shcherbina: J. Statist. Phys. 79, 585 (1995)MathSciNetADSCrossRefzbMATHGoogle Scholar
  26. 26.
    M.J. Bowick, E. Brézin: Phys. Letts. B 268, 21 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    E. Brézin, S. Hikami: Phys. Rev. E 55, 4067 (1997)MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    E. Brézin, S. Hikami: Nucl. Phys. B 479, 697 (1996)ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    E. Brézin, S. Hikami: Phys. Rev. E 56, 264 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    E. Brézin, S. Hikami: Phys. Rev. E 57, 4140 (1998)MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    E. Brézin, S. Hikami: Phys. Rev. E 58, 7176 (1998)MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    E. Brézin, S. Hikami, A. Zee: Phys. Rev. E 51, 5442 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    E. Brézin, C. Itzykson, G. Parisi, J.-B. Zuber: Commun. Math. Phys. 59, 35 (1978)ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    E. Brézin, V. A. Kazakov: Phys. Lett. B 236, 144 (1990)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    E. Brézin, A. Zee: Nucl. Phys. B 402, 613 (1993)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    R.C. Brower, N. Deo, S. Jain, C.-I. Tan: Nucl. Phys. B 405, 166 (1993)MathSciNetADSCrossRefzbMATHGoogle Scholar
  37. 37.
    Y. Chen, T. Grava: J. Phys. A 35, L45 (2002)MathSciNetADSCrossRefzbMATHGoogle Scholar
  38. 38.
    Y. Chen, M. Ismail: J. Phys. A 30, 7817 (1997)MathSciNetADSCrossRefzbMATHGoogle Scholar
  39. 39.
    Y. Chen, M. Ismail: J. Phys. A 30, 6633 (1997)MathSciNetADSCrossRefzbMATHGoogle Scholar
  40. 40.
    T. Claeys, A.B.J. Kuijlaars: Commun. Pure Appl. Math. 59, 1573 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    T. Claeys, A.B.J. Kuijlaars, M. Vanlessen: arXiv:math-ph/0508062Google Scholar
  42. 42.
    K.F. Clancey, I. Gohberg: Factorization of matrix functions and singular integral operators (Birkhäuser, Basel Boston 1981).zbMATHGoogle Scholar
  43. 43.
    F. Colomo, A.G. Pronko: J. Stat. Mech. 2005, P01005 (2005)CrossRefGoogle Scholar
  44. 44.
    O. Costin, P. Deift, D. Gioev: arXiv:math-ph/0610063Google Scholar
  45. 45.
    C. Crnkovic, M. Douglas, G. Moore: Int. J. Mod. Phys. A 7, 7693 (1992)MathSciNetADSCrossRefzbMATHGoogle Scholar
  46. 46.
    E. Daems, A.B.J. Kuijlaars: J. Approx. Theory 130 190 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    P. Deift: Orthogonal Polynomials and Random Matrices: a Riemann–Hilbert Approach (Amer. Math. Soc., Providence RI 1999)Google Scholar
  48. 48.
    P. Deift, D. Gioev: arXiv:math-ph/0411057Google Scholar
  49. 49.
    P. Deift, D. Gioev: arXiv:math-ph/0507023Google Scholar
  50. 50.
    P. Deift, D. Gioev, T. Kriecherbauer, M. Vanlessen: arXiv:math-ph/0612007Google Scholar
  51. 51.
    P. Deift, T. Kriecherbauer, K.T.-R. McLaughlin: J. Approx. Theory 95, 388 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    P. Deift, T. Kriecherbauer, K.T.-R. McLaughlin, S. Venakides, X. Zhou: Commun. Pure Appl. Math. 52 1335, (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    P. Deift, T. Kriecherbauer, K.T.-R. McLaughlin, S. Venakides, X. Zhou: Commun. Pure Appl. Math. 52, 1491 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    P. Deift, X. Zhou, Ann. Math. 137, 295 (1993)MathSciNetCrossRefGoogle Scholar
  55. 55.
    K. Demeterfi, N. Deo, S. Jain, C.-I. Tan: Phys. Rev. D, 42, 4105 (1990)ADSCrossRefGoogle Scholar
  56. 56.
    P. Di Francesco, P. Ginsparg, and J. Zinn-Justin: 2D gravity and random matrices, Phys. Rep. 254 (1995)Google Scholar
  57. 57.
    P. Di Francesco: Matrix model combinatorics: applications to folding and coloring. In: Random Matrices and Their Applications, ed by P.M. Bleher, A.R. Its (Cambridge Univ. Press, Cambridge 2001) pp 111–170Google Scholar
  58. 58.
    M. Douglas, N. Seiberg, S. Shenker: Phys. Lett. B 244, 381 (1990)MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    M. Douglas, S. Shenker: Nucl. Phys. B 335, 635 (1990)MathSciNetADSCrossRefGoogle Scholar
  60. 60.
    B.A. Dubrovin: Usp. Mat. Nauk 36, 11 (1981) (Russian); English transl.: Russ. Math. Surveys 36, 11 (1981)Google Scholar
  61. 61.
    M. Duits, A. Kuijlaars: Nonlinearity 19, 2211 (2006)MathSciNetADSCrossRefzbMATHGoogle Scholar
  62. 62.
    F.J. Dyson: Commun. Math. Phys. 19, 235 (1970)MathSciNetADSCrossRefzbMATHGoogle Scholar
  63. 63.
    B. Eynard: Nucl. Phys. B 506, 633 (1997)MathSciNetADSCrossRefzbMATHGoogle Scholar
  64. 64.
    B. Eynard: arXiv:math-ph/0109018Google Scholar
  65. 65.
    N.M. Ercolani, K.D.T.-R. McLaughlin: Int. Math. Res. Not. 2003, 755 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    N.M. Ercolani, K.D.T.-R. McLaughlin, V.U. Pierce: arXiv:math-ph/0606010.Google Scholar
  67. 67.
    H.M. Farkas, I. Kra: Riemann Surfaces, 2nd edn (Springer, New York 1992)zbMATHGoogle Scholar
  68. 68.
    A.S. Fokas, A. R. Its, A.V. Kitaev: Commun. Math. Phys. 147, 395 (1992)MathSciNetADSCrossRefzbMATHGoogle Scholar
  69. 69.
    P.J. Forrester, NucL. Phys. B 402, 709 (1993)MathSciNetADSCrossRefzbMATHGoogle Scholar
  70. 70.
    D. Gross, A. Migdal: Phys. Rev. Lett. 64 127 (1990)MathSciNetADSCrossRefzbMATHGoogle Scholar
  71. 71.
    D. Gross, A. Migdal, Nucl. Phys. B 340 333 (1990)MathSciNetADSCrossRefGoogle Scholar
  72. 72.
    D. Gross, E. Witten: Phys. Rev. D 21, 446 (1980)ADSCrossRefGoogle Scholar
  73. 73.
    T. Hollowood, L. Miramontes, A. Pasquinucci, C. Nappi, Nucl. Phys. B 373, 247 (1992)MathSciNetADSCrossRefGoogle Scholar
  74. 74.
    A.R. Its, A.V. Kitaev, A.S. Fokas, Zap. Nauch. Sem. LOMI 187 3 (1991) (Russian); English transl, J. Math. Sci. 73, 415 (1995)Google Scholar
  75. 75.
    A.R. Its, A.B.J. Kuijlaars, J. Östensson: arXiv:0704.1972.Google Scholar
  76. 76.
    A.R. Its, V. Novokshenov: The Isomonodromic Deformation Method in the Theory of Painlevé Equations (Springer, Berlin 1986)zbMATHGoogle Scholar
  77. 77.
    C. Itzykson, J.-B. Zuber: J. Math. Phys. 21, 411 (1980)MathSciNetADSCrossRefzbMATHGoogle Scholar
  78. 78.
    K. Johansson: Duke Math. J. 91, 151 (1988)MathSciNetCrossRefGoogle Scholar
  79. 79.
    A.V. Kitaev: Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 187, 53 (1991) (Russian); English transl.: J. Math. Sci. 73, 446 (1995)Google Scholar
  80. 80.
    T. Kriecherbauer, K.T.-R. McLaughlin: Internat. Math. Res. Notices 1999, 299 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  81. 81.
    A.B.J. Kuijlaars: Riemann–Hilbert analysis for orthogonal polynomials. In: Orthogonal Polynomials and Special Functions, ed by E. Koelink, W. Van Assche (Springer, Berlin 2003) pp 167–210Google Scholar
  82. 82.
    A.B.J. Kuijlaars, K.T.-R. McLaughlin: Commun. Pure Appl. Math. 53, 736 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    A.B.J. Kuijlaars, K.T.-R. McLaughlin: J. Comput. Appl. Math. 178, 313 (2005)MathSciNetADSCrossRefzbMATHGoogle Scholar
  84. 84.
    G.S. Litvinchuk, I.M. Spitkovskii: Factorization of Measurable Matrix Functions (Birkhäuser, Basel 1987).Google Scholar
  85. 85.
    M.L. Mehta: Random Matrices, 2nd edn (Academic Press, Boston, 1991)zbMATHGoogle Scholar
  86. 86.
    G. Moore: Progr. Theor. Phys. Suppl. 102, 255 (1990)ADSCrossRefGoogle Scholar
  87. 87.
    G. Moore: Commun. Math. Phys. 133, 261 (1990)ADSCrossRefzbMATHGoogle Scholar
  88. 88.
    A. Okounkov, N. Reshetikhin: arXiv:math.CO/0503508Google Scholar
  89. 89.
    L.A. Pastur: Teoret. Mat. Fiz. 10, 102 (1972) (Russian); English transl.: Theor. Math. Phys. 10, 67 (1972)Google Scholar
  90. 90.
    L.A. Pastur, M. Shcherbina: J. Stat. Phys. 86, 109 (1997)MathSciNetADSCrossRefzbMATHGoogle Scholar
  91. 91.
    T. Pearcey: Philos. Mag. 37, 311 (1946)MathSciNetGoogle Scholar
  92. 92.
    V. Periwal, D. Shevitz: Nucl. Phys. B 333, 731 (1990)MathSciNetADSCrossRefGoogle Scholar
  93. 93.
    E.B. Saff, V. Totik: Logarithmic Potentials with External Field (Springer, Berlin 1997)Google Scholar
  94. 94.
    A. Stojanovic: Math. Phys. Anal. Geom. 3 339 (2000); Errata: 7, 347 (2004)Google Scholar
  95. 95.
    G. Szegő: Orthogonal Polynomials, 4th edn (Amer. Math. Soc., Providence RI 1975)Google Scholar
  96. 96.
    C.A. Tracy, H. Widom: Introduction to random matrices. In: Geometric and Quantum Aspects of Integrable Systems (Springer, Berlin, 1993) pp 103–130Google Scholar
  97. 97.
    C.A. Tracy, H. Widom: Commun. Math. Phys. 159, 151 (1994)MathSciNetADSCrossRefzbMATHGoogle Scholar
  98. 98.
    C.A. Tracy, H. Widom: Commun. Math. Phys. 263, 381 (2006)MathSciNetADSCrossRefzbMATHGoogle Scholar
  99. 99.
    C.A. Tracy, H. Widom: arXiv:math.PR/0607321Google Scholar
  100. 100.
    W. Van Assche, J.S. Geronimo, A.B.J. Kuijlaars: Riemann–Hilbert problems for multiple orthogonal polynomials. In: Special Functions 2000: Current Perspective and Future Directions, ed by J. Bustoz, M.E.H. Ismail, S.K. Suslov (Kluwer Acad. Publ., Dordrecht, 2001) pp 23–59Google Scholar
  101. 101.
    E. Witten: Two-dimensional gravity and intersection theory on moduli spaces. In: Surveys in Differential Geometry (Lehigh Univ., Bethlehem PA, 1991) pp 243–310Google Scholar
  102. 102.
    X. Zhou: SIAM J. Math. Anal. 20, 966 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  103. 103.
    P. Zinn-Justin: Nucl. Phys. B 497, 725 (1997)MathSciNetADSCrossRefzbMATHGoogle Scholar
  104. 104.
    P. Zinn-Justin: Commun. Math. Phys. 194, 631 (1998)MathSciNetADSCrossRefzbMATHGoogle Scholar
  105. 105.
    P. Zinn-Justin: Phys. Rev. E 62, 3411 (2000)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mathematical SciencesIndiana University–Purdue University IndianapolisIndianapolisUSA

Personalised recommendations