Advertisement

Research and Development in the Field of Parallel Kinematic Systems in Europe

  • G. Pritschow
Conference paper
Part of the Advanced Manufacturing book series (ADVMANUF)

Abstract

In 1994 two American machine tool companies, Giddings & Lewis and Ingersoll, surprised the world with the presentation of a new type of machine tool. The Hexapod platform introduced by Mannesmann-Rexroth in 1990 and used as an automobile testing platform did not attract nearly as much attention as the presentation of the machine tools at the Chicago Trade Fair in 1994. Both of these machines were based on the paradigm of the parallel kinematic structure, developed by Steward in England in 1965 [1] which was a further development of his patent from 1964 [2]. The two machine tool companies named these new machine tools “Hexapod”. This name originates from the six basic constructional components of the machine — telescopic struts with numerically controlled drive units which, by changes in their respective lengths, control six degrees of freedom (position and orientation) of a platform. These new machine tool types stimulated the imagination of researchers world-wide, thus triggering the search for new improved kinematic structures for machine tools. But the question remains — how new are these activities?

Keywords

Machine Tool Dynamic Stiffness Machine Type Kinematic Structure Parallel Kinematic Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steward D 1965–1966 A platform with six degrees of freedom. In: Proc. Instn. Mech. Engrs., pp 371–386Google Scholar
  2. 2.
    Steward D 1963 Improvements in Mechanical Positioning Systems. Patent Specification No. 14710/63 Application 1963,Google Scholar
  3. 3.
    Pritschow G, Wurst K-H 1997 Systematic Design of Hexapods and other Parallel Link Systems. Annals of the CIRP 46(l):291–295CrossRefGoogle Scholar
  4. 4.
    Clavel R . 1985 Dispositif pour le déplacement et le positionnement d’un élément dans l’espace. Brevet suisse n° 672089 A5, priorité décembreGoogle Scholar
  5. 5.
    Clavel R 1994 Robots parallèles, Techniques de l’Ingénieur, traité Mesures et Contrôles. Association française de normalisation AFNORGoogle Scholar
  6. 6.
    Kohli D 1988 Manipulator configurations based on Rotary Linear (R. L.) Actuators and their Direct and Inverso Kinematics. J. of Mechanisms, Transmission and Automation in Design, December, 110:397–404Google Scholar
  7. 7.
    Behi F 1988 Kinematic analysis for a six degree-of-freedom 3-PRPS parallel mechanism. IEEE J. of Robotics and Automation 4(5):561–565CrossRefGoogle Scholar
  8. 8.
    Merlet: http://www.inria.fr/saga/personnel/merlet/Archi/node 1.htmlGoogle Scholar
  9. 9.
    Pritschow G, Wurst K-H 1997 Zur Gestaltungs- und Konstruktionssystematik von Maschinen mit Stabkinematiken. wt — Produktion und Management 87 6:46–51Google Scholar
  10. 10.
    Week M, Hennes N 1996 Produktion im 21. Jahrhundert - neue Maschinenkonzepte. dima 6: 112 - 128Google Scholar
  11. 11.
    Pritschow G, Wurst K-H 1997 LINAPOD — Ein Baukastensystem fur Stabkinematiken. wt — Produktion und Management 87, Sonderheft zur EMO’97Google Scholar
  12. 12.
    Neugebauer R, Wieland F et al. 1997 Hexapod-Werkzeugmaschine fiir die Hochgeschwindigkeitsbearbeitung. ZwF, Heft 9Google Scholar
  13. 13.
    Jaissle H U, Wurst K-H 1997 Neue Werkzeugmaschinenkinematiken. Tagungsband zum Fertigungstechnischen Kolloquium (FTK) 1997 Stuttgarter Impulse, Spinger-Verlag, pp 245–270Google Scholar
  14. 14.
    Heisel U, Bode H, Maier V 1998 Gestaltung und Bewertung von Gelenkeinheiten für Maschinen mit Hexapod-Kinematik. Teil 1 und Teil 2, Tagungsband Chemnitzer Parallelstrukturseminar, 28./29.04.98, Yerlag Wissenschaftliehe Scripten Zwickau, pp 27–49Google Scholar
  15. 15.
    Pritschow G, Überlegungen zur Armgestaltung von Parallel stabkinematiken. wt, Produktion und Management, Heft 9 (erscheint in Kürze)Google Scholar
  16. 16.
    Pritschow G 1996 On the Influence of the Velocity Gain Factor on the Path Deviation. Annals of the CIRP 45(1):367–371CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 1999

Authors and Affiliations

  • G. Pritschow
    • 1
  1. 1.Institut für Steuerungstechnik der Werkzeugmaschienen und FertigungseinrichtungenUniversity of StuttgartGermany

Personalised recommendations