Composite Fiber Recovery: Integration into a Design for Recycling Approach

  • Nicolas PerryEmail author
  • Stéphane Pompidou
  • Olivier Mantaux
  • Arnaud Gillet
Part of the Springer Series in Advanced Manufacturing book series (SSAM)


In industry, the use of composites, and more specially carbon fiber/thermoset matrix ones, is ever increasing. However, end-of-life solutions for these materials are still under development. In this chapter, a solution linking design strategies with a recycling process based on the solvolysis of the matrix by water under supercritical conditions is proposed. The needs and multi-disciplinary skills required for (i) taking recycling possibilities into account from the early stages of the product design, and (ii) the necessity to standardize its recycling capabilities with design requirements, will both be discussed. The present chapter highlights the need for designers to take a functional approach into consideration, including material characterization, limits of the recycling process, constraints and opportunities. The first lessons learned from experiments using this technique will be shown.


Carbon Fiber Recycling Process Composite Part Early Design Stage Recycling Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aymonier C, Loppinet-Serani A, Reverón H, Garrabos Y, Cansell F (2006) Review of supercritical fluids in inorganic materials science. J Supercrit Fluids 38(2):242–251CrossRefGoogle Scholar
  2. Bernard A, Ammar-Khodja S, Perry N, Laroche F (2007) Virtual engineering based on knowledge integration. Virtual Phys Prototyping 2(3):137–154CrossRefGoogle Scholar
  3. Berry S (1996) Design for recycling. Eng Des 22(4):8–14Google Scholar
  4. Boothroyd G, Alting L (1992) Design for assembly and disassembly. CIRP Ann-Manuf Technol 41(2):625–636CrossRefGoogle Scholar
  5. Bourmaud A, Baley C (2009) Rigidity analysis of polypropylene/vegetal fibre composites after recycling. Polym Degrad Stab J 92(6):1034–1045CrossRefGoogle Scholar
  6. Calcott P, Walls M (2005) Waste, recycling and design for environment: role of markets and policy instruments. Res Energy Econ J 27:287–305CrossRefGoogle Scholar
  7. Dennison A (2010) The test pyramid: a framework for consistent evaluation of RFID tags from design and manufacture to end use.
  8. Duflou JR, De Moor J, Verpoes I, Dewulf W (2009) Environmental impact analysis of composite use in car manufacturing. CIRP Ann-Manuf Technol 58:9–12CrossRefGoogle Scholar
  9. Feng LY (2010) The biomaterial for green composites. JEC Compos Mag Nat Fibres Environ 55:29–30Google Scholar
  10. Ferro P, Amaral J (2006) Design for recycling in the automobile industry: new approaches and new tools. J Eng Des 17(5):447–462CrossRefGoogle Scholar
  11. Gaustad G, Olivetti E, Kirchain R (2010) Design for recycling: evaluation and efficient alloy modification. J Ind Ecol. doi: 10.1111/j.1530-9290.2010.00229.x Google Scholar
  12. Kriwet A, Zussman E, Seliger G (1995) Systematic integration of design-for-recycling into product design. Int J Prod Econ 38(1):15–22CrossRefGoogle Scholar
  13. Kromm FX, Lorriot T, Coutand B, Harry R, Quenisset JM (2003) Tensile and creep properties of ultra-high molecular weight PE fibres. Polym Test 22(4):463–470CrossRefGoogle Scholar
  14. Ladevèze P, Puel G, Romeuf T (2006) Lack of knowledge in structural model validation. Comput Methods Appl Mech Eng 195:4697–4710CrossRefzbMATHGoogle Scholar
  15. Laurin F (2005) Approche multiéchelle des mécanismes de ruine progressive des matériaux stratifiés et analyse de la tenue de structures composites. PHD Thesis, Univ de Franche-ComtéGoogle Scholar
  16. Loppinet-Serani A, Aymonier C, Cansell F (2010) Supercritical water for environmental technologies. J Chem Technol Biotechnol 85(5):583–589. doi: 10.1002/jctb.2323 CrossRefGoogle Scholar
  17. Mantaux O, Aymonier C, Antal M (2009) Recycling of carbon fibre reinforced composite materials with supercritical water dissolution. In: Proceedings of the 16th Journées Nationales CompositesGoogle Scholar
  18. Mantaux O, Chibalon L, Lorriot T, Aurrekoetxea J, Puerto A, Arostegi A, Urrutibeascoa I (2004) Recycling study of end of life products made of ABS resin. J Mater Sci Technol 20(1):125–128Google Scholar
  19. Mohamad M (2010) Natural fibres for the 3rd millenium. JEC Compos Mag Nat Fibres Environ 55:23–28Google Scholar
  20. Perry N, Kromm FX, Mantaux O, Pilato A (2010a) Composite eco-design. In: IFIP AMPS 2010 conference, ComoGoogle Scholar
  21. Perry N, Mantaux O, Leray D, Lorriot T (2010b) Composite recycling: design for environment approach requirements. In: IDMME virtual concept 2010, BordeauxGoogle Scholar
  22. Pimenta S, Pinho ST (2011) Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook. Waste Manage 31–2:378–392CrossRefGoogle Scholar
  23. Rollet Y (2007) Vers une maîtrise des incertitudes en calculs des structures composites. PHD Thesis, ONERA—Ecole Polytechnique, PalaiseauGoogle Scholar
  24. Seager TP, Theis TL (2004) A taxonomy of metrics for testing the industrial ecology hypotheses and application to design of freezer insulation. J Cleaner Prod 12:865–875CrossRefGoogle Scholar
  25. Vallet F, Millet D, Eynard B (2010) How ecodesign tools are really used. In: Requirements list for a context-related ecodesign tool. CIRP design conference proceeding, NantesGoogle Scholar
  26. Weager B (2010) High-performance biocomposites: novel aligned natural fibre reinforcements. JEC Compos Mag Nat Fibres Environ 55:31–35Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Nicolas Perry
    • 1
    Email author
  • Stéphane Pompidou
    • 2
  • Olivier Mantaux
    • 2
  • Arnaud Gillet
    • 2
  1. 1.Arts et Métiers ParisTechTalenceFrance
  2. 2.Université de BordeauxTalenceFrance

Personalised recommendations