Selecting Manufacturing Process Chains in the Early Stage of the Product Engineering Process with Focus on Energy Consumption

  • Martin SwatEmail author
  • Horst Brünnet
  • Dirk Bähre
Part of the Springer Series in Advanced Manufacturing book series (SSAM)


Manufacturing process chains describe the concept of how the transformation of a raw material into a finished product is achieved. Within the planning phase of the process chains not only technical and economic requirements must be met but also ecological aspects need to be considered, e.g. the energy consumption during the production phase. The aim of this chapter is to illustrate how the energy consumption of process chains can be considered in the early stage of the planning phase. It provides an overview of the methods that are available to describe and predict the energy demand of consumers in process chains. The presented method is based on planning data like characteristic power consumption parameters of manufacturing equipment and related time parameters. It aims at predicting the energy consumption per product. The data is needed for predictive assessment of alternative process chains and to assess the impact of energy consumption during the production phase in life cycle considerations. Finally, this chapter presents an example for the energy-aware design and selection of a preferred process chain from several alternatives. By this it is illustrated how the presented heuristic approach can be applied.


Process chains Energy consumption Product engineering process 



This research activity was kindly supported by the research project “Ganzheitliche Gestaltung energieeffizienter technologischer Prozessketten (enPROchain)” funded by the program “Zentrales Innovationsprogramm Mittelstand (ZIM)” of the German Ministry of Economics (BMWi). This paper is a result of a joint effort with the Process and Software Engineering Company ENCOM and is supported by the KADIA Produktion GmbH + Co.


  1. Abele E, Schrems S, Eisele C, Schraml P (2012) Simulation-based assessment of the energy consumption of manufacturing processes. In: Proceedings of the 19th CIRP conference on life cycle engineering (LCE), Berkeley, USA, pp 375–380Google Scholar
  2. Baden-Würtemberg (2008) Energiesparend Fahren. Broschure of the Baden-Würtemberg ministry of internal affairsGoogle Scholar
  3. Bähre D, Swat M, Steuer P, Trapp K (2011) Energy consumption: One criterion of the sustainable design of process chains. In: Proceedings of the 9th global conference on sustainable manufacturing, St. Petersburg, Russia, pp 164–170Google Scholar
  4. Bosch Rexroth (2012) MTX ega—energy analysis tool. Accessed 12 Apr 2012
  5. Brünnet H, Yi I, Bähre D (2011) Modeling of residual stresses and shape deviations along the process chain of autofrettaged components. J Mater Sci Eng A, 1/7A:915–936Google Scholar
  6. Christ (2012) Data sheet power transmitter CLT 313. Accessed 14 Apr 2012
  7. Chrysler Corporation, Ford Motor Company, General Motors Corporation (2008) Advanced product quality planning (APQP) and control plan. Reference Manual, 2nd ednGoogle Scholar
  8. Dietmair A, Verl A (2008) A generic energy consumption model for decision making and energy efficiency optimisation in manufacturing. In: Proceedings of the 18th international conference on flexible automation and intelligent manufacturing (FAIM), Skövde, Sweden, pp 123–133Google Scholar
  9. DIN8589 (2003) Manufacturing processes chip removal—Part 14: Honing and superfinishing. Classification, subdivision, terms and definitions. Beuth, BerlinGoogle Scholar
  10. Ehrlenspiel K, Kiewert A, Lindemann U (2007) Cost-efficient design. Springer, BerlinCrossRefGoogle Scholar
  11. Eisenführ F, Weber M, Langer T (2010) Rational decision making. Springer, LondonCrossRefzbMATHGoogle Scholar
  12. Esawi AMK, Ashby MF (2003) Cost estimates to guide pre-selection of processes. Mater Des 24:605–616CrossRefGoogle Scholar
  13. Fallböhmer M (2000) Generieren alternativer Technologieketten in frühen Phasen der Produkt-entwicklung. Ph.D. thesis, RWTH Aachen, AachenGoogle Scholar
  14. Fang K, Uhan N, Zhao F, Sutherland JW (2011) A new shop scheduling approach in support of sustainable manufacturing. In: Proceedings of the 18th CIRP international conference on life cycle engineering (LCE), Braunschweig, Germany, pp 305–310Google Scholar
  15. FfE—Forschungsstelle für Energiewirtschaft e.V. (2012) Ganzheitliche Bilanzierung von Grundstoffen und Halbzeugen. Accessed 30 Apr 2012
  16. Gibson MC (2008) Determination of residual stress distributions in autofrettaged thick-walled cylinders. Dissertation, Cranfield UniversityGoogle Scholar
  17. Gutowski G, Branham M, Dahmus J, Jones A, Thirez A (2009) Thermodynamic analysis of resources used in manufacturing processes. Environ Sci Technol 43:1584–1590CrossRefGoogle Scholar
  18. Gutowski T, Dahmus J, Thiriez A (2006) Electrical energy requirements for manufacturing processes. In: Proceedings of the 13th CIRP international conference on life cycle engineering (LCE), Leuven, BelgiumGoogle Scholar
  19. Hobut (2012) Split-core current transformers. files/SplitCore%20Clip%20Together%20range%20-%20new.pdf. Accessed 14 Apr 2012
  20. Kendall DP (2000) A short history of high pressure technology from bridgman to division 3. J Press Vessel Technol 122:229–233CrossRefGoogle Scholar
  21. Klocke F, Fallböhmer M, Kopner A, Trommer G (2000) Methods and tools supporting modular process design. Robot Comput Integr Manuf 16:411–423CrossRefGoogle Scholar
  22. Kordonowy D (2002) A power assessment of machining tools. Bachelor of science thesis in mechanical engineering, Massachusetts Institute of Technology, Cambridge, MassachusettsGoogle Scholar
  23. Kotler P, Keller K, Brady M, Goodman M, Hansen T (2009) Marketing managment. Pearson, HarlowGoogle Scholar
  24. Kuhrke B (2011) Methode zur Energie- und Medienbedarfsbewertung spanender Werkzeug-maschinen. Ph.D. thesis, Technical University of Darmstadt, DarmstadtGoogle Scholar
  25. Löhe D, Lang KH (2002) Residual stresses and fatigue behavior. In: Totten GE et al. (eds) Handbook of residual stress and deformation of steel. ASM International, Materials Park, OhioGoogle Scholar
  26. Müller E, Engelmann J, Strauch J (2008) Energieeffizienz als Zielgröße in der Fabrikplanung. wt Werkstattstechnik online 98:634–639Google Scholar
  27. Peças P, Ribeiro I, Silva A, Henriques E (2013) Comprehensive approach for informed life cycle-based materials selection. Mater Des 43:220–232CrossRefGoogle Scholar
  28. Pechmann A, Schöler I (2011) Optimizing energy costs by intelligent production scheduling. In: Proceedings of the 18th CIRP international conference on life cycle engineering (LCE), Braunschweig, Germany, pp 293–298Google Scholar
  29. Reinhardt S, Fischl M, Reinhart G (2012) Characterization and weighting scheme to assess the resource efficiency of manufacturing process chains. In: Proceedings of the 19th CIRP conference on life cycle engineering (LCE), Berkeley, USA, pp 509–514Google Scholar
  30. Reynolds C, Kandlikar M (2007) How hybrid-electric vehicles are different from conventional vehicles: the effect of weight and power on fuel consumption. Environ Res Lett 2:014003CrossRefGoogle Scholar
  31. Sankar MR, Jain VK, Ramkumar J (2007) Abrasive flow machining (AFM): An overview. psgias/smart_machine_tools/V.K.Jain.pdf. Accessed 22 Nov 2011
  32. Schiefer E (2000) Ökologische Bilanzierung von Bauteilen für die Entwicklung umweltgerechter Produkte am Beispiel spanender Fertigungsverfahren. Ph.D. thesis, Technical University of Darmstadt, DarmstadtGoogle Scholar
  33. Schmitt C, Bähre D, Forsch K, Klein H (2011) Feinstbearbeiten hochgenauer Bohrungen durch Honen. In: Hoffmeister HW, Denkena B (eds) Jahrbuch Schleifen, Honen, Läppen und Polieren, 65th edn. Vulkan, EssenGoogle Scholar
  34. Schulz H, Atik A, Schiefer E (1999) Product development must consider environmental aspects. In: Kuljanic E (ed) AMST’99: Advanced manufacturing systems and technology. Springer, Wien, New York, 39–52Google Scholar
  35. Seeger T, Schön M et al (1994) Autofrettage I—Dauerfestigkeitssteigerung durch Autofrettage. Forschungsvereinigung Verbrennungskraftmaschinen, Vorhaben Nr 478Google Scholar
  36. Siemens (2012) SINUMERIK Ctrl-energy. Accessed 12 Apr 2012
  37. Sundin E (2010) Life-cycle perspectives of product/service-systems: in design theory. In: Sakao T, Lindahl M (eds) Introduction to product/service-system design. Springer, LondonGoogle Scholar
  38. Trommer G (2001) Methodik zur konstruktionsbegleitenden Generierung und Bewertung alternativer Fertigungsfolgen. Ph.D. thesis, RWTH Aachen, AachenGoogle Scholar
  39. Tzscheutschler P, Nickel M, Buttermann HG (2009) Energieverbrauch in Deutschland: Stand 2007, Daten, Fakten, Kommentare. BWK—Das Energie-Fachmagazin 61/6: 6–14Google Scholar
  40. VDA—Verband der Automobilindustrie e.V. (1998) Quality assurance prior to serial application–project planning, vol 4 Part 3, 1st edn.Google Scholar
  41. VDI 2423 (2002) Technical availability of machines and production lines—terms, definitions, determination of time periods and calculation. Beuth, BerlinGoogle Scholar
  42. Weinert N, Chiotellis S, Seliger G (2009) Concept for energy-aware production planning based on energy blocks. In: Proceedings of the 7th global conference on sustainable manufacturing, Madras, India, pp 75–80Google Scholar
  43. Weyand L, Bley H, Swat M, Trapp K, Bähre D (2011) Energy consumption as one possible exclusion criterion for the reuse of old equipment in new production lines. In: Proceedings of the 18th CIRP international conference on life cycle engineering (LCE), Braunschweig, Germany, pp 287–292Google Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  1. 1.Institute of Production EngineeringSaarland UniversitySaarbrückenGermany

Personalised recommendations