Manufacturing with Minimal Energy Consumption: A Product Perspective

  • Alexandra Pehlken
  • Alexandra KirchnerEmail author
  • Klaus-Dieter Thoben
Part of the Springer Series in Advanced Manufacturing book series (SSAM)


The aim of this paper is to highlight energy intensive process steps in compound feed production and their importance for the overall LCA in feed processing. The carbon footprint has become a relevant measure among the animal and feed experts for comparing product or process performances. Our research focuses on the energy intensive process steps in the feed production line. Due to the fact that there is a high pressure on feed and food quality, there are very limited possibilities to change the process since a certain energy input is needed to reach the requested quality. The solution can be provided through an intelligent network process control. The network needs access to automatic sensor control devices that are installed inline to measure varying product parameters like the changing water content in grains for example (due to rainy or dry seasons). The knowledge of certain product parameters will influence the process control like for example steam addition to the process. An intelligent network supports the best energy performance for producing the requested compound feed quality by the customer. The paper summarizes the information along the compound feed production that is necessary for an energy efficient process control and explains how an intelligent network can contribute to the latter.


Feed processing Expert system Energy management Process control Life cycle assessment 


  1. Behnke KC (2006) The art (science) of pelleting. In: American Soybean Association (ed) ASA technical report series-feed technology, Singapore, pp 5–9Google Scholar
  2. Beierle C, Kern-Isberner G (2008) Methoden wissensbasierter systeme. Grundlagen, algorithmen, anwendungen. Springer, New YorkGoogle Scholar
  3. Cooksley J (2010) Processing aid boosts feed mill productivity and efficiency. Feed Compounder (May 2010):28–31Google Scholar
  4. Dalgaard R, Halberg N, Hermansen JE (2007) Danish pork production. An environmental assessment. Accessed 29 May 2012
  5. European Commission—DG Joint Research Centre—Institute for Environment and Sustainability EUROPA-Site on LCA Tools, Services and Data—LCI dataset area. Accessed 31 May 2012
  6. European Commission and Council (2003) Directive 2003/99/EC of the European parliament and of the council of 17 November 2003 on the monitoring of zoonoses and zoonotic agents. Zoonosen-VerordnungGoogle Scholar
  7. European Commission and Council (2005) Regulation (EC) no 183/2005 of the European parliament and of the council of 12 January 2005 laying down requirements for feed hygiene. Futtermittel-HygieneverordnungGoogle Scholar
  8. FEFAC (2009) Environment report. Accessed 29 May 2012Google Scholar
  9. FEFAC (2010) Feed and food statistical yearbook 2010. Accessed 29 May 2012Google Scholar
  10. Forgy CL (1982) Rete: a fast algorithm for the many pattern/many object pattern match problem. Artif Intell 19(1):17–37. doi: 10.1016/0004-3702(82)90020-0 CrossRefGoogle Scholar
  11. Friedrich, Jansen, Robohm (1978) Der Verdichtungsvorgang bem Pelletieren von Mischfutter. Untersuchungen der Einflussgrößen mit dem Ziel, den Verschleiß zu reduzieren und den Energiebedarf zu lenken. Schlussbericht zum AiF-Vorhaben 3154, Braunschweig-ThuneGoogle Scholar
  12. Friedrich W (1983) Warum ist dampfzugabe beim pelletieren wirtschaftlicher als wasser? die mühle + mischfuttertechnik 120(14):173–178Google Scholar
  13. Glandorf H, Genschel AHJ (2010) Energieeinsparpotenziale in einem MischfutterwerkGoogle Scholar
  14. von Graf Reichenbach H (2011) The KAHL Crown Expander—A Way Out of the Feed Structure Dilemma. Accessed 10 Apr 2012
  15. Große Liesner (2008) Zur Gesundheit der Magenschleimhaut von Absetzferkeln unter dem Einfluss der Futterstruktur und—konfektionierung. Dissertation, Tierärztliche HochschuleGoogle Scholar
  16. Heidenreich E (1999) Benefits and side effects of expanding. Feed Tech 3(1):21–23Google Scholar
  17. Heidenreich E (2001) Untersuchungen zur alternativen Mischfutterherstellung mit optimiertem Energieverbrauch. Studies on alternative compound feed production with optimised specific energy consumption. Kraftfutter/Feed Mag 11:394–408Google Scholar
  18. Heimann M (2006) Step grinding for improved efficiency of grain and meal products. In: American Soybean Association (ed) ASA Technical report series-feed technology, Singapore, pp 53–55Google Scholar
  19. Jeroch H, Flachowsky G, Weissbach F (eds) (1993) Futtermittelkunde. Gustav Fischer Verlag, JenaGoogle Scholar
  20. Kamphues J, Brüning I, Papenbrock S, Mößeler A, Wolf P, Verspohl J (2007a) Lower grinding intensity of cereals for dietetic effects in piglets. Livestock Sci (109):132–134Google Scholar
  21. Kamphues J, Papenbrock S, Visscher C, Offenberg C, Neu N, Verspohl J, Westfahl C, Häbich A (2007b) Bedeutung von Futter und Fütterung für das Vorkommen von Salmonellen bei Schweinen. Übers Tierernährg (35):233–279Google Scholar
  22. Kirchner A (2010) Liquid addition to feeding stuff powders as an aspect of feed quality and safety. Archiva Zootechnica 13:55–61Google Scholar
  23. Kottowski C (2012) Analyse von unscharfen Parametern in Materialflüssen mit Erstellung eines Carbon Footprints. Diploma thesis, Bremen UniversityGoogle Scholar
  24. Lardy G (2007) Feeding coproducts of the ethanol industry to beef cattle. Accessed 09 Nov 2012
  25. Löwe R (2010) Factors affecting pelleting and energy consumption. Grain Feed Milling Technol 121:14–17Google Scholar
  26. Löwe R (2011) Technological aspects of feedstuff comminuting and compacting. In: DLG-Verlag (ed) Proceedings of the society of nutrition physiology band 20. Berichte der Gesellschaft für Ernährungsphysiologie. DLG-Verlag, Frankfurt am Main, pp 147–149Google Scholar
  27. Noras B (2012) Absatz- und Umsatzwachstum für die Futtermittelindustrie. Ursachen: hohe Rohstoffkosten und positive Entwicklung der Tierhaltung, Deutscher Verband Tiernahrung, BonnGoogle Scholar
  28. Redecker M, Pehlken A (2012) The impact of processing natural resources on uncertainties in life cycle assessment, SETAC World Congress 2012, BerlinGoogle Scholar
  29. Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006) Livestock’s long shadow: environmental issues and options. Food and Agriculture Organization of the United Nation, RomeGoogle Scholar
  30. Thomassen M, van Calker K, Smits M, Iepema G, de Boer I (2008) Life cycle assessment of conventional and organic milk production in the Netherlands. Agric Syst 96(1–3):95–107. doi: 10.1016/j.agsy.2007.06.001 CrossRefGoogle Scholar
  31. Tukker A, Huppes G, Guinée J, Heijungs R, Koning A de, van Oers L, Suh SGT, van Holderbeke M, Jansen B, Nielsen P (2006) Environmental impact of products (EIPRO): analysis of the life cycle environmental impacts related to the final consumption of the EU-25Google Scholar
  32. Ziggers D (2011) AllAboutFeed—processing: power in motion—New Kubex T pellet mill. Accessed 10 Apr 2012

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Alexandra Pehlken
    • 1
  • Alexandra Kirchner
    • 2
    Email author
  • Klaus-Dieter Thoben
    • 1
  1. 1.Bremen UniversityBremenGermany
  2. 2.International Research Association of Feed TechnologyBraunschweigGermany

Personalised recommendations