Advertisement

Comparative Ethanol Productivities of Different Zymomonas Recombinants Fermenting Oat Hull Hydrolysate

  • Hugh G. LawfordEmail author
  • Joyce D. Rousseau
  • Jeffrey S. Tolan
Chapter
  • 364 Downloads
Part of the ABAB Symposium book series (ABAB)

Abstract

Iogen Corporation of Ottawa, Canada, has recently built a 501/d biomass-to-ethanol demonstration plant adjacent to its enzyme production facility. Iogen has partnered with the University of Toronto to test the C6/C5 cofermentation performance characteristics of National Renewable Energy Laboratory's metabolically engineered Zymomonas mobilis using its biomass hydrolysates. In this study, the biomass feedstock was an agricultural waste, namely oat hulls, which was hydrolyzed in a proprietary two-stage process involving pretreatment with dilute sulfuric acid at 200–250°C, followed by cellulase hydrolysis. The oat hull hydrolysate (OHH) contained glucose, xylose, and arabinose in a mass ratio of about 8:3:0.5. Fermentation media, prepared from diluted hydrolysate, were nutritionally amended with 2.5 mL/L of corn steep liquor (50% solids) and 1.2 g/L of diammonium phosphate. The estimated cost for large-scale ethanol production using this minimal level of nutrient supplementation was 4.4¢/gal of ethanol. This work examined the growth and fermentation performance of xylose-utilizing, tetracycline-resistant, plasmid-bearing, patented, recombinant Z. mobilis cultures: CP4:pZB5, ZM4:pZB5, 39676:pZB4L, and a hardwood prehydrolysate-adapted variant of 39676:pZB4L (designated as the “adapted” strain). In pH-stat batch fermentations with unconditioned OHH containing 6% (w/v) glucose, 3% xylose, and 0.75% acetic acid, rec Zm ZM4:pZB5 gave the best performance with a fermentation time of 30 h, followed by CP4:pZB5 at 48 h, with corresponding volumetric productivities of 1.4 and 0.89 g/(L-h), respectively. Based on the available glucose and xylose, the process ethanol yield for both strains was 0.47 g/g (92% conversion efficiency). At 48 h, the process yield for rec Zm 39676:pZB4L and the adapted strain was 0.32 and 0.34 g/g, respectively. None of the test strains was able to ferment arabinose. Acetic acid tolerance appeared to be a major determining factor in cofer-mentation performance.

Index Entries

Recombinant Zymomonas oat hull hydrolysate xylose biomass hydrolysate ethanol yield acetic acid productivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Foody, B. F. (2000), 21st Symposium on Biotechnology for Fuels and Chemicals, Fort Collins, CO (abstract no. 6–01).Google Scholar
  2. 2.
    Foody, B. F. and Tolan, J. S. (2000), 22nd Symposium on Biotechnology for Fuels and Chemicals, Gatlinburg, TN (abstract no. 6–07).Google Scholar
  3. 3.
    Hinman, N. D., Wright, J. D., Hoagland, W., and Wyman, C. E. (1989), Appl. Biochem. Biotechnol. 20/21, 391–401.CrossRefGoogle Scholar
  4. 4.
    McMillan, J. D. (1994), in Enzymatic Conversion ofBiomassfor Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds., ACS Symposium Series 566, American Chemical Society, Washington, DC, pp. 411–437.CrossRefGoogle Scholar
  5. 5.
    Hahn-Hagerdal, B., Hallborn, J., Jeppsson, H., Olsson, L., Skoog, K., and Waif ridsson, M. (1993), in Bioconversion of Forest and Agricultural Plant Residues, Saddler, J. N., ed., C.A.B. International, Wallingford, UK, pp. 411–437.Google Scholar
  6. 6.
    Zhang, M., Franden, M. A., Newman, M., McMillan, J., Finkelstein, M., and Picataggio, S. (1995), Appl Biochem. Biotechnol. 51/52, 527–536.Google Scholar
  7. 7.
    Picataggio, S. K., Zhang, M., and Finkelstein, M. (1994), in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds., ACS Symposium Series 566, American Chemical Society, Washington, DC, pp. 342–362.CrossRefGoogle Scholar
  8. 8.
    Zhang, M., Eddy, C, Deanda, K., Finkelstein, M., and Picataggio, S. K. (1995), Science 267, 240–243.CrossRefGoogle Scholar
  9. 9.
    Deanda, K. A., Eddy, C, Zhang, M., and Picataggio, S. (1996), Appl. Environ. Microbiol. 62, 4465–4470.Google Scholar
  10. 10.
    Lawford, H. G., Rousseau, J. D., and McMillan, J. D. (1997), Appl. Biochem. Biotechnol. 63–65, 269–286.CrossRefGoogle Scholar
  11. 11.
    Lawford, H. G. and Rousseau, J. D. (1997), Appl. Biochem. Biotechnol. 63–65, 287–304.CrossRefGoogle Scholar
  12. 12.
    Lawford, H. G. and Rousseau, J. D. (1998), Appl. Biochem. Biotechnol. 70–72, 161–172.CrossRefGoogle Scholar
  13. 13.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1998), Appl. Biochem. Biotechnol. 70–72, 353–368.CrossRefGoogle Scholar
  14. 14.
    Lawford, H. G. and Rousseau, J. D. (1999), Appl. Biochem. Biotechnol. 77–79, 235–249.CrossRefGoogle Scholar
  15. 15.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1999), Appl. Biochem. Biotechnol. 77–79, 191–204.CrossRefGoogle Scholar
  16. 16.
    Lawford, H. G. and Rousseau, J. D. (2000), Appl. Biochem. Biotechnol. 84–86, 277–294.CrossRefGoogle Scholar
  17. 17.
    Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (2000), Appl. Biochem. Biotechnol. 84–86, 295–310.CrossRefGoogle Scholar
  18. 18.
    Joachimsthal, E. and Rogers, P. L. (1999), Appl. Biochem. Biotechnol. 84–86, 343–356.Google Scholar
  19. 19.
    Goodman, A. E., Rogers, P. L., and Skotnicki, M. L. (1982), Appl. Environ. Microbiol. 44, 496–498.Google Scholar
  20. 20.
    McMillan, J. D. (1994), in Enzymatic Conversion of Biomass for Fuels Production, Himmel, M. E., Baker, J. O., and Overend, R. A., eds., ACS Symposium Series 566, American Chemical Society, Washington, DC, pp. 411–437.CrossRefGoogle Scholar
  21. 21.
    Booth, I. R. (1985), Microbiol. Rev. 49, 63–91.Google Scholar
  22. 22.
    Joachimsthal, E., Haggett, K. D., Jang, J.-H., and Rogers, P. L. (1998), Biotechnol. Lett. 20, 137–142.CrossRefGoogle Scholar
  23. 23.
    McMillan, J. D., Newman, M. M., Templeton, D. W., and Mohagheghi, A. (1999), Appl. Biochem. Biotechnol. 77–79, 649–665.CrossRefGoogle Scholar
  24. 24.
    Rogers, P. L., Joachimsthal, E. L., and Haggett, K. D. (1997), J. Australasian Biotechnol. 7304–309.Google Scholar
  25. 25.
    Zhang, M., Chou, Y. C, Mohagheghi, A., Evans, K., Milstrey, S., Lai, X. K., and Finkelstein, M. (2000), 22nd Symposium on Biotechnology for Fuels and Chemicals, Gatlinburg, TN (abstract no. 2–03), Humana, Totowa, NJ.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Hugh G. Lawford
    • 1
    Email author
  • Joyce D. Rousseau
    • 1
  • Jeffrey S. Tolan
    • 2
  1. 1.Bio-engineering Laboratory, Department of BiochemistryUniversity of TorontoTorontoCanada
  2. 2.IOGEN CorporationOttawaCanada

Personalised recommendations