Advertisement

Cellulase Recovery via Membrane Filtration

  • Wendy D. Mores
  • Jeffrey S. Knutsen
  • Robert H. DavisEmail author
Chapter
Part of the ABAB Symposium book series (ABAB)

Abstract

A combined sedimentation and membrane filtration process was investigated for recycling cellulase enzymes in the biomass-to-ethanol process. In the first stage, lignocellulose particles longer than approx 50µm were removed by means of sedimentation in an inclined settler. Microfiltration was then utilized to remove the remaining suspended solids. Finally, the soluble cellulase enzymes were recovered by ultrafiltration. The permeate fluxes obtained in microfiltration and ultrafiltration were approx 400 and 80 L/(m2 h), respectively. A preliminary economic analysis shows that the cost benefit of enzyme recycling may be as much as 18 cents/gal of ethanol produced, provided that 75% of the enzyme is recycled in active form.

Index Entries

Sedimentation microfiltration ultrafiltration cellulase enzyme 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lynd, L. R., Wyman, C. E., and Gerngross, T. U. (1999), Biotechnol. Prog. 15, 777–793.CrossRefGoogle Scholar
  2. 2.
    McCoy, M. (1998), C&EN 12, 29–32.Google Scholar
  3. 3.
    Lee, J. (1997), J. Biotechnol 56, 1–24.CrossRefGoogle Scholar
  4. 4.
    Wooley, R., Ruth, M., Sheehan, J., Ibsen, K., Majdeski, H., and Galvez, A. (1999), NREL/TP-580–26157. National Technical Information Service, Springfield, VA.Google Scholar
  5. 5.
    Nguyen, O. A., Keller, F. A., Tucker, M. P., et al. (1999), Appl. Biochem. Biotechnol 77/79, 455–472.Google Scholar
  6. 6.
    Hill, W. D., Rothfus, R. R., and Li, K. (1977), Int. J. Multiphase Flow 3, 561–583.CrossRefGoogle Scholar
  7. 7.
    Acrivos, A. and Herbolzheimer, E. (1979), J. Fluid Mech. 92, 435–457.CrossRefGoogle Scholar
  8. 8.
    Davis, R. H. and Gecol, H. (1996), Int. J. Multiphase Flow 22, 563–574.CrossRefGoogle Scholar
  9. 9.
    Davis, R. H. and Acrivos, A. (1985), Annu. Rev. Fluid Mech. 17, 91–118.CrossRefGoogle Scholar
  10. 10.
    Kroner, K. H., Schutte, H., Hustedt, H., and Kula, M. R. (1984), Process Biochem. April, 67–74.Google Scholar
  11. 11.
    Davis, R. H., Zhang, X., and Agarwala, J. P. (1989), Ind. Eng. Chem. Res. 28, 785–793.CrossRefGoogle Scholar
  12. 12.
    Kuberkar, V. T. and Davis, R. H. (2000), J. Membr. Sci. 168, 245–260.CrossRefGoogle Scholar
  13. 13.
    Kuberkar, V. T., Czekaj, P., and Davis, R. H. (1998), Biotech. Bioeng. 60, 70–87.CrossRefGoogle Scholar
  14. 14.
    Roseiro, J. C., Conceição, A. C., and Amaral-Collaço, M. T. (1993) Bioresour. Technol. 43, 155–160.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Wendy D. Mores
    • 1
  • Jeffrey S. Knutsen
    • 1
  • Robert H. Davis
    • 1
    Email author
  1. 1.Department of Chemical EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations