Advertisement

Fermentation of Xylose into Acetic Acid by Clostridium thermoaceticum

  • Niru Balasubramanian
  • Jun Seok Kim
  • Y. Y. LeeEmail author
Chapter
  • 351 Downloads
Part of the ABAB Symposium book series (ABAB)

Abstract

For optimum fermentation, fermenting xylose into acetic acid by Clostridium thermoaceticum (ATCC 49707) requires adaptation of the strain to xylose medium. Exposed to a mixture of glucose and xylose, it preferentially consumes xylose over glucose. The initial concentration of xylose in the medium affects the final concentration and the yield of acetic acid. Batch fermentation of 20 g/L of xylose with 5 g/L of yeast extract as the nitrogen source results in a maximum acetate concentration of 15.2 g/L and yield of 0.76 g of acid/g of xylose. Corn steep liquor (CLS) is a good substitute for yeast extract and results in similar fermentation profiles. The organism consumes fructose, xylose, and glucose from a mixture of sugars in batch fermentation. Arabinose, mannose, and galactose are consumed only slightly. This organism loses viability on fed-batch operation, even with supplementation of all the required nutrients. In fed-batch fermentation with CSL supplementation, D-xylulose (an intermediate in the xylose metabolic pathway) accumulates in large quantities.

Index Entries

Xylose fermentation Clostridium thermoaceticum acetic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Johnson, K. L. (1994), Cryotech Deicing Technologies, Fort Madison, IA.Google Scholar
  2. 2.
    Ljungdahl, L. G. (1983), Formation of Acetate Using Homoacetate Fermenting Anaerobic Bacteria in Organic Chemicals from Biomass, Menlo Park, CA.Google Scholar
  3. 3.
    Sugaya, K. and Jones, J. L. (1986), Biotechnol. Bioeng. 28, 678–683.CrossRefGoogle Scholar
  4. 4.
    Wijitra, K. (1994), MS thesis, University of Illinois, Urbana.Google Scholar
  5. 5.
    Fontaine, F. E., Peterson, W. H., McCoy, E., and Johnson, M. J. (1942), J. Bacterial. 43, 701–715.Google Scholar
  6. 6.
    Andreesen, J. R., Schaupp, A., Neurauter, C., Brown, A., and Ljundahl, L. G. (1973), J. Bacteriol. 114, 743–751.Google Scholar
  7. 7.
    Brumm, P. J. (1988), Biotechnol. Bioeng. 32, 444–450.CrossRefGoogle Scholar
  8. 8.
    Parekh, S. R. and Cheryan, M. (1990), Process Biochem. Int. 25, 117–121.Google Scholar
  9. 9.
    Parekh, S. R. and Cheryan, M. (1990), Biotechnol. Lett. 16(2), 139–142.CrossRefGoogle Scholar
  10. 10.
    Parekh, S. R. and Cheryan, M. (1990), Appl. Microbiol. Biotechnol. 36, 384–387.Google Scholar
  11. 11.
    Stephanopoulous, G. and San, K. Y. (1985), Biotechnol. Prog. 1(4), 250–259.CrossRefGoogle Scholar
  12. 12.
    Liggett, R. W. and Koffler, H. (1948), Bacteriol. Rev. 12, 297–311.Google Scholar
  13. 13.
    Shah, M. M. and Cheryan, M. (1995), J. Ind. Microbiol. 15, 424–428.CrossRefGoogle Scholar
  14. 14.
    Bock, S. A., Fox, S. L., and Gibbons, W. R. (1997), Biotechnol. Appl. Biochem. 25, 117–125.Google Scholar
  15. 15.
    Sikyta, B. (1983), Methods in Ind. Microbiol, Wiley, New York.Google Scholar
  16. 16.
    Larsson, S., Palmquist, E., and Nilvebrant, N. (1999), Enzyme Microbiol. Technol. 24(3/4), 151–159.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Niru Balasubramanian
    • 1
  • Jun Seok Kim
    • 1
  • Y. Y. Lee
    • 1
    Email author
  1. 1.Department of Chemical EngineeringAuburn UniversityAuburnUSA

Personalised recommendations