Advertisement

Measurement of Bubble Size Distribution in Protein Foam Fractionation Column Using Capillary Probe with Photoelectric Sensors

  • Liping Du
  • Yuqing Ding
  • Aleš Prokop
  • Robert D. TannerEmail author
Chapter
Part of the ABAB Symposium book series (ABAB)

Abstract

Bubble size is a key variable for predicting the ability to separate and concentrate proteins in a foam fractionation process. It is used to characterize not only the bubble-specific interf acial area but also coalescence of bubbles in the foam phase. This article describes the development of a photoelectric method for measuring the bubble size distribution in both bubble and foam columns for concentrating proteins. The method uses a vacuum to withdraw a stream of gas-liquid dispersion from the bubble or foam column through a capillary tube with a funnel-shaped inlet. The resulting sample bubble cylinders are detected, and their lengths are calculated by using two pairs of infrared photoelectric sensors that are connected with a high-speed data acquisition system controlled by a microcomputer. The bubble size distributions in the bubble column 12 and 1 cm below the interface and in the foam phase 1 cm above the interface are obtained in a continuous foam fraction-ation process for concentrating ovalbumin. The effects of certain operating conditions such as the feed protein concentration, superficial gas velocity, liquid flow rate, and solution pH are investigated. The results may prove to be helpful in understanding the mechanisms controlling the foam fractionation of proteins.

Index Entries

Bubble size capillary tube photoelectric method foam fractionation ovalbumin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greaves, M. and Kobbacy, K. A. H. (1984), Chem. Eng. Res. Des. 62, 3–12.Google Scholar
  2. 2.
    Weiland, P., Brentrup, L., and Onken, U. (1980), German Chem. Eng. 3, 269–302.Google Scholar
  3. 3.
    Barigou, M. and Greaves, M. (1991), Meas. Sci. Technol. 2, 318–326.CrossRefGoogle Scholar
  4. 4.
    Gao, D., Xu, Z., and Zhang, J. (1986), J. East China Inst. Chem. Technol. 12(Suppl.), 115–126 (in Chinese).Google Scholar
  5. 5.
    Yu, B., Deng, X., and Shi, Y. (1988), J. East China Inst. Chem. Technol. 14(5), 588–596 (in Chinese).Google Scholar
  6. 6.
    Jiang, H. and Gao, D. (1988), J. East China Inst. Chem. Technol. 14(5), 597–604 (in Chinese).Google Scholar
  7. 7.
    Zhang, Z., Dai, G., and Chen, M. (1989), J. Chem. Eng. Chin. Univ. 3(2 ), 42–49.Google Scholar
  8. 8.
    Uraizee, F. and Narsimhan, G. (1995), in Bioseparation Processes in Foods, Singh, R. K. and Rivzi, S. S. H., eds., Marcel Dekker, New York, pp. 175–225.Google Scholar
  9. 9.
    Uraizee, F. and Narsimhan, G. (1996), BiotechnoL Bioeng. 51, 384–398.CrossRefGoogle Scholar
  10. 10.
    Calvert, J. R. and Nezhati, K. (1987), Int. J, Heat Fluid Flow 8(2), 102–106.CrossRefGoogle Scholar
  11. 11.
    Magrabi, S. A., Dlugogorski, B. Z., and Jameson, G. J. (1999), Chem. Eng. Sci. 54, 4007–4022.CrossRefGoogle Scholar
  12. 12.
    Brown, L., Narsimhan, G., and Wankat, P. C. (1990), BiotechnoL Bioeng. 36, 947–959.CrossRefGoogle Scholar
  13. 13.
    Wong, C. H., Hossain, M. D., Stanley, R. A., and Davies, C. E. (1996), in CHEMECA’96, 24th Australian and New Zealand Chemical Engineering Conference Proceedings, vol. 4, Sydney, Australia, pp. 105–110.Google Scholar
  14. 14.
    Wilde, P. J. (1996), J. Colloid Interface 178, 733–739.CrossRefGoogle Scholar
  15. 15.
    Bae, J. H. and Tavlarides, L. L. (1989), AIChE J. 35(7), 1073–1084.CrossRefGoogle Scholar
  16. 16.
    Wallis, G. B. (1969), in One-Dimensional Two-Phase Flow, McGraw-Hill, New York, pp. 212–314.Google Scholar
  17. 17.
    Bradford, M. M. (1976), Analyt. Biochem. 72, 248–254.CrossRefGoogle Scholar
  18. 18.
    Lage, P. L. C. and Esposito, R. O. (1999), Powder Technol. 101, 142–150.CrossRefGoogle Scholar
  19. 19.
    Brown, A. K., Kaul, A., and Varley, J. (1999), Biotechnol. Bioeng. 62(3), 278–290.CrossRefGoogle Scholar
  20. 20.
    Tanner, R. D., Parker, T., Ko, S., Ding, Y., Loha, V., Du, L., and Prokop, A. (2000), Appl. Biochem. Biotechnol. 84–86, 835–842.CrossRefGoogle Scholar
  21. 21.
    Hammershoj, M., Prins, A., and Qvist, K. B. (1999), J. Sci. Food Agric. 79, 859–868.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Liping Du
    • 1
  • Yuqing Ding
    • 1
  • Aleš Prokop
    • 1
  • Robert D. Tanner
    • 1
    Email author
  1. 1.Chemical Engineering DepartmentVanderbilt UniversityNashvilleUSA

Personalised recommendations