Model Compound Studies

Influence of Aeration and Hemicellulosic Sugars on Xylitol Production by Candida tropicalis
  • Thomas Walthers
  • Patcharee Hensirisak
  • Foster A. AgblevorEmail author
Part of the ABAB Symposium book series (ABAB)


The influence of other hemicellulosic sugars (arabinose, galactose, man-nose, and glucose), oxygen limitation, and initial xylose concentration on the fermentation of xylose to xylitol was investigated using experimental design methodology. Oxygen limitation and initial xylose concentration had strong influences on xylitol production by Candida tropicalis ATCC 96745. Under semiaerobic conditions, xylitol yield was highest (0.62 g/g), whereas under aerobic conditions volumetric productivity was highest (0.90 g/ [L-h]). In the presence of glucose, xylose utilization was strongly repressed and sequential sugar utilization was observed. Ethanol produced from the glucose caused a 50% reduction in xylitol yield when the ethanol concentration exceeded 30 g/L. When complex synthetic hemicellulosic sugars were fermented, glucose was initially consumed followed by a simultaneous uptake of the other sugars. The highest xylitol yield (0.84 g/g) and volumetric productivity (0.49 g/ [L-h]) were obtained for substrates containing high arabinose and low glucose and mannose contents.

Index Entries

Xylitol fermentation aeration hemicellulose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pepper, T. and Olinger, M. (1988), Food Technol. 10, 98–106.Google Scholar
  2. 2.
    Roberto, I., Felipe, M. G. A., Mancilha, I. M., Vitolo, M., Sato, S., and da Silva, S. S. (1995), Bioresour. Technol. 51, 255–257.CrossRefGoogle Scholar
  3. 3.
    Perego, P., Converti, A., Palazzi, E., Del Borghi, M., and Ferraiolo, G. (1990), J. Ind. Microbiol. 6, 157–164.CrossRefGoogle Scholar
  4. 4.
    Horitsu, H., Yahashi, Y., Takamizawa, K., Kawai, K., Suzuki, T., and Watanabe, N. (1992), Biotechnol. Bioeng. 40, 1085–1091.CrossRefGoogle Scholar
  5. 5.
    Hespell, R. B., O’Bryan, P. J., Moniruzzaman, M., and Bothast, R. J. (1997), Appl. Biochem. Biotechnol. 62, 87–96.CrossRefGoogle Scholar
  6. 6.
    Whistler, R. L. (1993), in Industrial GumsPolysaccharides and Their Derivatives, Whistler, R. D. and BeMiller, J. N., eds., Academic, San Diego, pp. 295–308.Google Scholar
  7. 7.
    Chen, L.-F. and Gong, C.-S. (1985), J. Food Sci. 50, 226–228.CrossRefGoogle Scholar
  8. 8.
    Jeffries, T. W. and Screenath, H. K. (1988), Biotechnol. Bioeng. 31, 502–506.CrossRefGoogle Scholar
  9. 9.
    Olsson, L. and Hahn-Hagerdahl, B. (1993), Process Biochem. 28, 249–257.CrossRefGoogle Scholar
  10. 10.
    Saha, B. C., Dien, B. S., and Bothast, R. J. (1998), Appl. Biochem. Biotechnol. 70–72, 115–125.CrossRefGoogle Scholar
  11. 11.
    Nolleau, V., Preziosi-Belloy, L., Delgenes, J. P., and Navarro, J. M. (1993), Curr. Microbiol. 27, 191–197.CrossRefGoogle Scholar
  12. 12.
    Box, G. E. P. and Draper, N. R. (1987), Empirical Model Building and Response Surfaces, John Wiley & Sons, New York.Google Scholar
  13. 13.
    Ojamo, H. (1994), Yeast Xylose Metabolism and Xylitol Production, Technical Research Centre of Finland, VTT Publications, Espoo, Finland.Google Scholar
  14. 14.
    Yahashi, Y., Horitsu, H., Kawai, K., Suzuki, T., and Takamizawa, K. (1996), J. Ferment. Technol. 81, 148–152.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Thomas Walthers
    • 1
  • Patcharee Hensirisak
    • 2
  • Foster A. Agblevor
    • 2
    Email author
  1. 1.Department of Mechanical EngineeringTechnical University of DresdenDresdenGermany
  2. 2.Department of Biological Systems EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations