Advertisement

Production of Biosurfactant from a New and Promising Strain of Pseudomonas aeruginosa PA1

  • L. M. Santa Anna
  • G. V. Sebastian
  • N. PereiraJr.
  • T. L. M. Alves
  • E. P. Menezes
  • D. M. G. Freire
Chapter
  • 361 Downloads
Part of the ABAB Symposium book series (ABAB)

Abstract

The Pseudomonas aeruginosa PA1 strain, isolated from the water of oil production in Sergipe, Northeast Brazil, was evaluated as a potential rhamnolipid type of biosurfactant producer. The production of biosurfactants was investigated using different carbon sources (n-hexadecane, paraffin oil, glycerol, and babassu oil) and inoculum concentrations (0.0016–0.008 g/L). The best results were obtained with glycerol as the substrate and an initial cell concentration of 0.004 g/L. A C:N ratio of 22.8 led to the greatest production of rhamnolipids (1700 mg/L) and efficiency (1.18 g of rhamnolipid/g of dry wt).

Index Entries

Production of biosurfactants glycolipids rhamnolipids Pseudomonas aeruginosa surface tension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    García, M. A. (1992), Revista Instituto Mexicano Petroleo 24, 68.Google Scholar
  2. 2.
    2. Harvey, S., Elashvili, L., Valdes, J. J., Kamely, D., and Chakrabarty, M. (1990), Biotechnology 8, 228–338.CrossRefGoogle Scholar
  3. 3.
    3. Fiechter, A. (1992), Tibtech 1, 208.CrossRefGoogle Scholar
  4. 4.
    4. Boulton, C. and Ratledge, C. (1987), Biosurfactants Biotechonol. 25, 47.Google Scholar
  5. 5.
    5. Ochener, U. A., Hembach, T., and Fiechter, A. (1995), Adv. Biochem. Eng. Biotechnol. 53, 89.Google Scholar
  6. 6.
    6. Venkata Ramana, K. and Karanth, N. G. (1989), J. Chem. Technol. Biotechnol. 45, 249.CrossRefGoogle Scholar
  7. 7.
    7. Biolog (1993), MicroStation™ System Release, version 3.50.Google Scholar
  8. 8.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. (1956), Anal. Chem. 28, 350–356.CrossRefGoogle Scholar
  9. 9.
    Trinder, P. (1969), Ann. Clin. Biochem. 6, 24–27.Google Scholar
  10. 10.
    American Society for Testing Materials. (1999), ASTM D971–99a Standard Test Method for Interfacial Tension of Oil Against Water by the Ring Method, American Society for Testing Materials.Google Scholar
  11. 11.
    Suk, W.-S., Son, H.-J., Lee, G., and Lee, S.-J. (1999), J. Microbiol. Biotechonol. 9(1), 56–61.Google Scholar
  12. 12.
    Hisatsuka, K., Nakahara, T., Sano, N., and Yamanda, K. (1971), Agric. Biol. Chem. 35, 686–692.CrossRefGoogle Scholar
  13. 13.
    Banat, I. M. (1995), Acta Biotechnol. 15(3), 251–267.CrossRefGoogle Scholar
  14. 14.
    Ribeiro, A., Zhou, A., and Raetz, C. R. H. (1999), Magnet. Reson. Chem. 37, 620–630.CrossRefGoogle Scholar
  15. 15.
    Syldatk, C., Lang, S., and Matulovic, U. (1985), Z. Naturforsch. 40(1), 61–67.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • L. M. Santa Anna
    • 1
    • 5
  • G. V. Sebastian
    • 1
  • N. PereiraJr.
    • 2
  • T. L. M. Alves
    • 3
  • E. P. Menezes
    • 4
  • D. M. G. Freire
    • 5
  1. 1.Centro de Pesquisas da Petrobras (Petrobras Research Center-CENPES)Brazil
  2. 2.Escola de QuímicaUFRJBrazil
  3. 3.PEQ/COPPE/UFRJRio de JaneiroBrazil
  4. 4.Fundação Tropical André ToselloCampinasSão PauloBrazil
  5. 5.Faculdade de FarmáciaUFRJRio de JaneiroBrazil

Personalised recommendations