Production of Bacterial Cellulose from Alternate Feedstocks

  • David N. ThompsonEmail author
  • Melinda A. Hamilton
Part of the ABAB Symposium book series (ABAB)


Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low-solids (LS) and high-solids (HS) potato effluents, cheese whey permeate (CW), or sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did strain 10821 and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, and LS was unsuitable for production by strain 10821. However, strain 23770 produced 17% more cellulose from LS than from glucose, indicating that unamended LS could serve as a feedstock for bacterial cellulose.

Index Entries

Bacterial cellulose Acetobacter xylinum potato effluent beet raffinate whey permeate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krieger, J. (1990), Chem. Eng. News 68, 35–37.Google Scholar
  2. 2.
    Johnson, D. C. and Winslow, A. R. (1990), Pulp Paper 64(6), 105–107.Google Scholar
  3. 3.
    Brown, R. M. Jr. (1989), in Cellulose: Structural and Functional Aspects, Kennedy, J. F., Phillips, G. O., and Williams, P. A., eds., Ellis Horwood, Chichester, pp. 145–151.Google Scholar
  4. 4.
    Okiyama, A., Motoki, M., and Yamanaka, S. (1992), Food Hydrocoll. 6, 479–487.CrossRefGoogle Scholar
  5. 5.
    Ross, P., Mayer, R., and Benziman, M. (1991), Microbiol. Rev. 55, 35–58.Google Scholar
  6. 6.
    Nishi, Y., Uryu, M., Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., and Mitsuhashi, S. (1990), J. Mater. Sci. 25, 2997–3001.CrossRefGoogle Scholar
  7. 7.
    Fontana, J. D., de Souza, A. M., Fontana, C. K., Torriani, I. L., Moreschi, J. C., Gallotti, B. J., de Souza, S. J., Narcisco, G. P., Bichara, J. H., and Farah, L. F. X. (1990), Appl. Biochem. Biotechnol. 24/25, 253–264.CrossRefGoogle Scholar
  8. 8.
    Farah, L. F. X. (1990), US patent 4,912,049.Google Scholar
  9. 9.
    Yamanaka, S., Ono, E., Watanabe, K., Kusakabe, M., and Suzuki, Y. (1990), European patent application EP 0 396 344.Google Scholar
  10. Ring, D. F., Nashed, W., and Dow, T. (1986), US patent 4,588,400.Google Scholar
  11. 11.
    Chatterjee, P. K. (1989), Spivnin Proceedings of the Nisshinbo International Conference on Cellulosics Utilization in the Near Future, Inagaki, H. and Phillips, G. O., eds., Elsevier Science, New York, pp. 12–17.Google Scholar
  12. 12.
    Shibazaki, H., Kuga, S., Onabe, F., and Usuda, M. (1993), J. Appl. Polym. Sci. 50, 965–969.CrossRefGoogle Scholar
  13. 13.
    Masaoka, S., Ohe, T., and Sakota, N. (1993), J. Ferment. Bioeng. 75, 18–22.CrossRefGoogle Scholar
  14. 14.
    Zaar, K. (1979), J. Cell Biol. 80, 773–777.CrossRefGoogle Scholar
  15. 15.
    Watanabe, K. and Yamanaka, S. (1995), Biosci. Biotechnol. Biochem. 59, 65–68.CrossRefGoogle Scholar
  16. 16.
    Oikawa, T., Morino, T., and Ameyama, M. (1995), Biosci. Biotechnol. Biochem. 59, 1564, 1565.Google Scholar
  17. 17.
    Ishikawa, A., Matsuoka, M., Tsuchida, T., and Yoshinaga, F. (1995), Biosci. Biotechnol. Biochem. 59, 2259–2262.CrossRefGoogle Scholar
  18. 18.
    Oikawa, T., Ohtori, T., and Ameyama, M. (1995), Biosci. Biotechnol. Biochem. 59, 331, 332.Google Scholar
  19. 19.
    Matsuoka, M., Tsuchida, T., Matsushita, K., Adachi, O., and Yoshinaga, F. (1996), Biosci. Biotechnol. Biochem. 60, 575–579.CrossRefGoogle Scholar
  20. 20.
    Thompson, D. N., Fox, S. L., and Bala, G. A. (2000), Appl. Biochem. Biotechnol. 84–86, 917–930.CrossRefGoogle Scholar
  21. 21.
    Thompson, D. N., Fox, S. L., and Bala, G. A. (2001), Appl. Biochem. Biotechnol. 91–93, 487–501.CrossRefGoogle Scholar
  22. 22.
    Schramm, M. and Hestrin, S. (1954), J. Gen. Microbiol. 11, 123–129.Google Scholar
  23. 23.
    Gherna, P. (1989), in American Type Culture Collection Catalogue of Bacteria and Phages, 17th ed., American Type Culture Collection, Rockville, MD, p. 403.Google Scholar
  24. 24.
    Gerhardt, P., Murray, R. G. E., Wood, W. A., arad Krieg, N. R., eds. (1994), in Methods for General and Molecular Bacteriology, American Society for Microbiology, Washington, DC, pp. 518, 519.Google Scholar
  25. 25.
    Forng, E. R., Anderson, S. M., and Cannon, R. E. (1989), Appl. Environ. Microbiol. 55, 1317–1319.Google Scholar
  26. 26.
    De Wulf, P., Joris, K., and Vandamme, E. J. (1996), J. Chem. Technol. Biotechnol. 67, 376–380.CrossRefGoogle Scholar
  27. 27.
    Geyer, U., Klemm, D., and Schmauder, H.-P. (1994), Acta Biotechnol. 14, 261–266.CrossRefGoogle Scholar
  28. 28.
    Roukas, T. (1998), Process Biochem. 33, 805–810.CrossRefGoogle Scholar
  29. 29.
    Dudman, W. F. (1959), J. Gen. Microbiol. 21, 327–337.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  1. 1.Biotechnology DepartmentIdaho National Engineering and Environmental LaboratoryIdaho FallsUSA

Personalised recommendations