Factorization Theorems

  • Avraham Feintuch
Part of the Applied Mathematical Sciences book series (AMS, volume 130)


In Chapter 3, we considered two situations of algebras of operators containing particular subalgebras whose matrix representations are lower triangular: Inline Equation
$${H^\infty } \subset {L^\infty }$$


Invariant Subspace Great Common Divisor Factorization Theorem Cholesky Factorization Partial Isometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References, Notes, and Remarks

  1. 1.
    Arveson, W. B., Interpolation problems in nest algebrasJ. Funct. Anal.20 (1975), 208–233.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Davidson, K. R., Nest AlgebrasPitman Research Notes in Mathematics191, 1988.zbMATHGoogle Scholar
  3. 3.
    Green, M., Glover, K., Limebeer, D. J. N., Doyle, J., A J-spectral factorization approach to HcontrolSIAM J. Cont. and Optim.28 (1990), 1350–1371.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Feintuch, A., Suboptimal solutions to the time-varying model matching problemSystem Control Lett.25 (1995), 299–306.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Power, S. G., Factorization in Analytic Operator AlgebrasJ. Funct. Anal.67 (1986), 413–432.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Adamjan, V. M., Arov, D. Z., Krein, M. G, Infinite Hankel block matrices and related extension problemsAMS Transi.series 2,111 (1978), 133–156.zbMATHGoogle Scholar
  7. 7.
    Iglesias, P. A., An entropy formula for time-varying discrete time control systemsSIAM J. Cont. and Optim.34 (1996), 1691–1706.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Mustafa, D., Glover, K., Minimum EntropyH ControlLecture Notes in Control and Information Sciences, 146, Springer-Verlag, 1990.CrossRefGoogle Scholar
  9. 9.
    Gohberg, I., Kaashoek, M., Woerdeman, H., A maximum entropy principle in the general framework of the band methodJ. Funct. Anal.95 (1991), 231–254.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Gohberg, I., Goldberg, S., Kaashoek, M.Classes of Linear OperatorsVol. II, 0T, Adv Applic., 63, Basel, Birkhauser-Verlag, 1993.zbMATHGoogle Scholar
  11. 11.
    Feintuch, A., Saeks, R., Neil, C., A new performance measure for stochastic optimization in Hilbert spaceMath Systems Theory15 (1981), 39–54.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Avraham Feintuch
    • 1
  1. 1.Department of Mathematics and Computer ScienceBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations