Quasilinear Singular Perturbation Problems

  • K. W. Chang
  • F. A. Howes
Part of the Applied Mathematical Sciences book series (AMS, volume 56)


We consider now the singularly perturbed quasilinear Dirichlet problem
$$\begin{gathered} \varepsilon y''{\text{ }} = {\text{ f}}({\text{t}},y)y'{\text{ }} + {\text{ g(t}},y{\text{) }} \equiv {\text{ F}}({\text{t}},y,y'),{\text{ a }} < {\text{ t }} < {\text{ b}}, \hfill \\ y({\text{a}},\varepsilon ){\text{ }} = {\text{A}},{\text{ }}y({\text{b}},\varepsilon ){\text{ }} = {\text{B}}. \hfill \\ \end{gathered} $$


Dirichlet Problem Stable Solution Domain Versus Stable Case Singular Perturbation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • K. W. Chang
    • 1
  • F. A. Howes
    • 2
  1. 1.Department of MathematicsUniversity of CalgaryCalgaryCanada
  2. 2.Department of MathematicsUniversity of CaliforniaDavisUSA

Personalised recommendations