Advertisement

Random Sets pp 297-320 | Cite as

Random Sets in Decision—Making

  • Hung T. Nguyen
  • Nhu T. Nguyen
Chapter
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 97)

Abstract

As its title indicates, this contribution aims at presenting some typical situations in decision-making in which random sets appear naturally and seem to play a useful role.

Key words

Capacity Capacity Functional Choquet Integral Distribution Functional Maximum Entropy Random Sets Set-Function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. CroquetTheory of capacitiesAnn. Inst. Fourier, 5 (1953/54), pp. 131–295.Google Scholar
  2. [2]
    G. DebreuIntegration of correspondencesProc. 5th Berkeley Symp. Math. Statist. Prob., 2 (1967), pp. 351.MathSciNetGoogle Scholar
  3. [3]
    R. DurrettProbability: Theory and Examples(Second Edition), Duxbury Press, Belmont, 1996.Google Scholar
  4. [4]
    B. Dutta and D. Ray, Aconcept of egalitarianism under participation constraintsEconometrica, 57 (1989), pp. 615–635.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    I.R. GoodmanFuzzy sets as equivalence classes of random setsin Fuzzy Sets and Possibility Theory (R. Yager Ed.), (1982), pp. 327–343.Google Scholar
  6. [6]
    I. Gilboa and D. SchmeidlerCanonical representation of set-functionsMath. Oper. Res., 20 (1995), pp. 197–212.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    S. GrafA Radon-Nikodym theorem for capacitiesJournal fuer Reine and Angewandte Mathematik, 320 (1980), pp. 192–214.MathSciNetzbMATHGoogle Scholar
  8. [8]
    J. HajekSampling from a Finite PopulationMarcel Dekker, New York, 1981.zbMATHGoogle Scholar
  9. [9]
    P. HallIntroduction to the Theory of Coverage ProcessesJ. Wiley, New York, 1988.Google Scholar
  10. [10]
    J.Y. JaffrayOn the maximum-entropy probability which is consistent with a convex capacityIntern. J. Uncertainty, Fuzziness and Knowledge-Based Systems, 3 (1995), pp. 27–33.Google Scholar
  11. [11]
    J.Y. Jaffray (1996)A complement to an maximum entropy probability which is consistent with a convex capacityPreprint.Google Scholar
  12. [12]
    E.F. Harding and D.G. Kendall (Eds.)Stochastic GeometryJ. Wiley, New York, 1973.Google Scholar
  13. [13]
    M. Marinacci (1996)Decomposition and representation of coalitional gamesMath. Oper. Res., 21 (1996), pp. 1000–1015.MathSciNetCrossRefGoogle Scholar
  14. [14]
    G. MatheronRandom Sets and Integral GeometryJohn Wiley, New York, 1975.zbMATHGoogle Scholar
  15. [15]
    A. Meyerowitz, F. Richman and E.A. WalkerCalculating maximum entropy probability densities for belief functionsIntern. J. Uncertainty, Fuzziness and Knowledge-Based Systems, 2 (1994), pp. 377–390.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    I.S. MolchanovLimit Theorems for Unions of Random Closet SetsLecture Notes in Math. No. 1561, Springer-Verlag, Berlin, 1993.Google Scholar
  17. [17]
    H.T. Nguyen and E.A. WalkerOn decision-making using belief functionsIn Advances in the Dempster-Shafer Theory of Evidence (R. Yager et al. Eds.) J. Wiley, New York 1994, pp. 312–330.Google Scholar
  18. [18]
    S.A. OrlowskiCalculus of Decomposable Properties Fuzzy Sets and DecisionsAllerton Press, New York, 1994.Google Scholar
  19. [19]
    A. RevuzFonctions croissantes et mesures sur les espaces topologiques ordonnesAnn. Inst. Fourier VI (1956), pp. 187–268.MathSciNetCrossRefGoogle Scholar
  20. [20]
    H.E. RobbinsOn the measure of a random setAnn. Math. Statist. 15 (1944), pp. 70–74.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    L.S. ShapleyCores of convex gamesIntern. J. Game Theory, 1 (1971), pp. 11–26.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    B. Schweizer and A. SklarProbabilistic Metric SpacesNorth-Holland, Amsterdam, 1983.zbMATHGoogle Scholar
  23. [23]
    D. Stoyan, W.S. Kendall and J. MECKEStochastic Geometry and Its Applications(Second Edition), J. Wiley, New York, 1995.zbMATHGoogle Scholar
  24. [24]
    L.A. WassermanSome Applications of Belief Functions to Statistical InferencePh.D. Thesis, University of Toronto, 1987.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Hung T. Nguyen
  • Nhu T. Nguyen
    • 1
  1. 1.Department of Mathematical SciencesNew Mexico State UniversityLas CrucesUSA

Personalised recommendations