Random Sets pp 27-45 | Cite as

Statistical Problems for Random Sets

  • Ilya Molchanov
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 97)


This paper surveys different statistical issues that involve random closed sets. The main topics include the estimation of capacity functionals, averaging and expectations of random sets, models of compact sets, and statistics of the Boolean model.

Key words

Aumann Expectation Averaging Boolean Model Capacity Functional Distance Function Empirical Distribution Point Process Random Polygon Set-Valued Expectation Spatial Process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. AignerCombinatorial TheorySpringer, New York, 1979.zbMATHCrossRefGoogle Scholar
  2. [2]
    D. Aldous, B. Fristedt, PH.S. Griffin, and W.E. PruittThe number ofextremepoints in the convex hull of a random sampleJ. Appl. Probab., 28 (1991), pp. 287–304.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Z. Artstein and R.A. VitaleA strong law of large numbers for random compact setsAnn. Probab., 3 (1975), pp. 879–882.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    R.J. AumannIntegrals of set-valued functionsJ. Math. Anal. Appl., 12 (1965), pp. 1–12.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    A.J. Baddeley and I.S. MolchanovAveraging of random sets based on their distance functionsJ. Math. Imaging and Vision., (1997). To Appear.Google Scholar
  6. [6]
    J.K. Beddow and T.P. MelloyTesting and Characterization of Powder and Fine ParticlesHeyden & Sons, London, England, 1980.Google Scholar
  7. [7]
    F.L. BooksteinSizeandshape spaces for landmark data in two dimensions (with discussion)Statist. Sci., 1 (1986), pp. 181–242.zbMATHGoogle Scholar
  8. [8]
    D. BortnikStochastische Regularisierung und ihre Anwendung auf StochastischGeometrische SchiitzproblemePh.D. Thesis, Westfälische Wilhelms-Universität Münster, Münster, 1996.Google Scholar
  9. [9]
    H. BroziusConvergence in mean of some characteristics of the convex hullAdv. in Appl. Probab., 21 (1989), pp. 526–542.MathSciNetzbMATHGoogle Scholar
  10. [10]
    H. Brozius and L.D.E. HaanOn limiting laws for the convex hull of a sampleJ. Appl. Probab., 24 (1987), pp. 852–862.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    N.A.C. CressieStatistics for Spatial DataWiley, New York, 1991.zbMATHGoogle Scholar
  12. [12]
    D.J. Daley and D.Vere-Jones, AnIntroduction to the Theory of Point ProcessesSpringer, New York, 1988.zbMATHGoogle Scholar
  13. [13]
    R.A. Davis, E. Mulrow, and S.I. ResnickThe convex hull of a random sample in 1R 2Comm. Statist. Stochastic Models, 3 (1987), pp. 1–27.MathSciNetzbMATHGoogle Scholar
  14. [14]
    R.T. DehoffThe quantitative estimation of mean surface curvatureTransactions of the American Institute of Mining, Metallurgical and Petroleum Engineering, 239 (1967), p. 617.Google Scholar
  15. [15]
    P.J. DiggleBinary mosaics and the spatial pattern of heatherBiometrics, 37 (1981), pp. 531–539.CrossRefGoogle Scholar
  16. [16]
    S. DossSur la moyenne d’un élément aléatoire dans un espace distanciéBull. Sci. Math., 73 (1949), pp. 48–72.MathSciNetzbMATHGoogle Scholar
  17. [17]
    I.L. Dryden and K.V. MardiaMultivariate shape analysisSankhya A, 55 (1993), pp. 460–480.MathSciNetzbMATHGoogle Scholar
  18. [18]
    K.J. FalconerRandom fractalsMath. Proc. Cambridge Philos. Soc., 100 (1986), pp. 559–582.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    M. FréchetLes éléments aléatoires de nature quelconque dans un espace distanciéAnn. Inst. H. Poincaré, Sect. B, Prob. et Stat., 10 (1948), pp. 235–310.Google Scholar
  20. [20]
    L.A. GalwayStatistical Analysis of Star-Shaped SetsPh.D. Thesis, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1987.Google Scholar
  21. [21]
    S. GrafA Radon-Nikodym theorem for capacitiesJ. Reine Angew. Math., 320 (1980), pp. 192–214.MathSciNetzbMATHGoogle Scholar
  22. [22]
    A. Haas, G. Matheron and J. SerraMorphologie mathematique et granulome-tries en placeAnn. Mines, 11–12 (1967), pp. 736–753, 767–782.Google Scholar
  23. [23]
    P. HallIntroduction to the Theory of Coverage ProcessesWiley, New York, 1988.zbMATHGoogle Scholar
  24. [24]
    H.J.A.M. HeijmansMorphological Image OperatorsAcademic Press, Boston, 1994.Google Scholar
  25. [25]
    L. HeinrichOn existence and mixing properties of germ—grain modelsStatistics, 23 (1992), pp. 271–286.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    L. HeinrichAsymptotic properties of minimum contrast estimators forparametersof Boolean modelsMetrika, 31 (1993), pp. 349–360.MathSciNetGoogle Scholar
  27. [27]
    W. HererEsperance mathematique au sens de Doss d’une variable aleatoire a valeurs dans un espace metriqueC. R. Acad. Sci., Paris, Ser. I, 302 (1986), pp. 131–134.MathSciNetGoogle Scholar
  28. [28]
    P.J. HuberRobust StatisticsWiley, New York, 1981.zbMATHCrossRefGoogle Scholar
  29. [29]
    A.F. KarrPoint Processes and Their Statistical InferenceMarcel Dekker, New York, 2nd edn., 1991.zbMATHGoogle Scholar
  30. [30]
    A.M. KellererCounting figures in planar random configurationsJ. Appl. Probab., 22 (1985), pp. 68–81.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    H. Le and D.G. KendallThe Riemannian structure of Euclidean shape space: A novel environment for statisticsAnn. Statist., 21 (1993), pp. 1225–1271.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    M.N.L. Van LieshoutOn likelihood for Markov random sets and Boolean modelsAdvances in Theory and Applications of Random Sets (D. Jeulin, ed.), World Scientific Publishing Co., Singapore, 1997, pp. 121–136.Google Scholar
  33. [33]
    A. Mancham AND I.S. MolchanovStochastic models of randomly perturbed images and related estimation problemsImage Fusion and Shape Variability Techniques (K.V. Mardia and C.A. Gill, eds.), Leeds, England: Leeds University Press, 1996, pp. 44–49.Google Scholar
  34. [34]
    S. MaseAsymptotic properties of stereological estimators of volume fraction for stationary random setsJ. Appl. Probab., 19 (1982), pp. 111–126.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    G. MatheronRandom Sets and Integral GeometryWiley, New York, 1975.zbMATHGoogle Scholar
  36. [36]
    I.S. MolchanovUniform laws of large numbers for empirical associated functionals of random closed setsTheory Probab. Appl., 32 (1987), pp. 556–559.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    I.S. MolchanovOn convergence of empirical accompanying functionals of stationary random setsTheory Probab. Math. Statist., 38 (1989), pp. 107–109.MathSciNetzbMATHGoogle Scholar
  38. [38]
    I.S. Molchanov, Acharacterization of the universal classes in the GlivenkoCantelli theorem for random closed setsTheory Probab. Math. Statist., 41 (1990), pp. 85–89.MathSciNetzbMATHGoogle Scholar
  39. [39]
    I.S. MolchanovHandling with spatial censored observations in statistics of Boolean models of random setsBiometrical J., 34 (1992), pp. 617–631.MathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    I.S. MolchanovLimit Theorems for Unions of Random Closed Setsvol. 1561of Lect. Notes Math., Springer, Berlin, 1993.Google Scholar
  41. [41]
    I.S. MolchanovOn statistical analysis of Boolean models with non-random grainsScand. J. Statist., 21 (1994), pp. 73–82.MathSciNetzbMATHGoogle Scholar
  42. [42]
    I.S. MolchanovStatistics of the Boolean model: From the estimation of means to the estimation of distributionsAdv. in Appl. Probab., 27 (1995), pp. 63–86.MathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    I.S. MolchanovSet-valued estimators formeanbodies related to Boolean modelsStatistics, 28 (1996), pp. 43–56.MathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    I.S. MolchanovStatistics of the Boolean Model for Practitioners and MathematiciansWiley, Chichester, 1997.zbMATHGoogle Scholar
  45. [45]
    I.S. Molchanov and D. StoyanAsymptotic properties of estimators for param-etersof the Boolean modelAdv. in Appl. Probab., 26 (1994), pp. 301–323.MathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    I.S. Molchanov and D. StoyanStatistical models of random polyhedraComm. Statist. Stochastic Models, 12 (1996), pp. 199–214.MathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    E. PirardShape processing and analysis using the calypterJ. Microscopy, 175 (1994), pp. 214–221.CrossRefGoogle Scholar
  48. [48]
    T. Réti and I. CzinegeShape characterization of particles via generalised Fourier analysisJ. Microscopy, 156 (1989), pp. 15–32.CrossRefGoogle Scholar
  49. [49]
    H. RichterVerallgemeinerung eines in der Statistik benötigten Satzes der MafitheorieMath. Ann., 150 (1963), pp. 85–90, 440–441.CrossRefGoogle Scholar
  50. [50]
    R. SchneiderRandom approximations of convex setsJ. Microscopy, 151 (1988), pp. 211–227.CrossRefGoogle Scholar
  51. [51]
    R. SchneiderConvex Bodies. The Brunn—Minkowski TheoryCambridge University Press, Cambridge, England, 1993.zbMATHCrossRefGoogle Scholar
  52. [52]
    J. SerraImage Analysis and Mathematical MorphologyAcademic Press, London, England, 1982.zbMATHGoogle Scholar
  53. [53]
    G.R. Shorack and J.A. WellnerEmpirical Processes with Applications to StatisticsWiley, New York, 1986.zbMATHGoogle Scholar
  54. [54]
    N.D. Sidiropoulos, J.S. Baras, and C.A. BerensteinAlgebraic analysis of the generating functional for discrete random sets and statistical inference for intensity in the discrete Boolean random-set modelJournal of Mathematical Imaging and Vision, 4 (1994), pp. 273–290.CrossRefGoogle Scholar
  55. [55]
    D. Stoyan, W.S. Kendall, and J. MeckeStochastic GeometryandIts ApplicationsWiley, Chichester, 2ndedn., 1995.Google Scholar
  56. [56]
    D. Stoyan and G. LippmannModels of stochastic geometry — A surveyZ. Oper. Res., 38 (1993), pp. 235–260.MathSciNetzbMATHGoogle Scholar
  57. [57]
    D. Stoyan and I.S. MolchanovSet-valued means of random particlesJournal of Mathematical Imaging and Vision, 27 (1997), pp. 111–121.MathSciNetCrossRefGoogle Scholar
  58. [58]
    D. Stoyan and H. StoyanFractals Random Shapes and Point FieldsWiley, Chichester, 1994.zbMATHGoogle Scholar
  59. [59]
    R.A. VitaleAn alternate formulation of meanvalue for random geometricfiguresJ. Microscopy, 151 (1988), pp. 197–204.CrossRefGoogle Scholar
  60. [60]
    R.A. VitaleThe Brunn-Minkowski inequality for random setsJ. Multivariate Anal., 33 (1990), pp. 286–293.MathSciNetzbMATHCrossRefGoogle Scholar
  61. [61]
    O.Yu Vorob’evSrednemernoje Modelirovanie (Mean-Measure Modelling)Nauka, Moscow, 1984. In Russian.Google Scholar
  62. [62]
    D. WagnerSurvey of measurable selection theoremSIAM J. Control Optim., 15 (1977), pp. 859–903.zbMATHCrossRefGoogle Scholar
  63. [63]
    W. WeilExpectation formulas and isoperimetric properties for non-isotropic Boolean modelsJ. Microscopy, 151 (1988), pp. 235–245.CrossRefGoogle Scholar
  64. [64]
    W. Weil and J.A. WieackerDensities for stationary random sets and point processesAdv. in Appl. Probab., 16 (1984), pp. 324–346.MathSciNetzbMATHGoogle Scholar
  65. [65]
    H. ZiezoldMean figures and mean shapes applied to biological figures and shape distributions in the planeBiometrical J., 36 (1994), pp. 491–510.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ilya Molchanov
    • 1
  1. 1.Department of StatisticsUniversity of GlasgowScotland, UK

Personalised recommendations